• Title/Summary/Keyword: Multi-objective function optimization

Search Result 273, Processing Time 0.028 seconds

Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization (다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

Steel nitriding optimization through multi-objective and FEM analysis

  • Cavaliere, Pasquale;Perrone, Angelo;Silvello, Alessio
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2016
  • Steel nitriding is a thermo-chemical process leading to surface hardening and improvement in fatigue properties. The process is strongly influenced by many different variables such as steel composition, nitrogen potential, temperature, time, and quenching media. In the present study, the influence of such parameters affecting physic-chemical and mechanical properties of nitride steels was evaluated. The aim was to streamline the process by numerical-experimental analysis allowing defining the optimal conditions for the success of the process. Input parameters-output results correlations were calculated through the employment of a multi-objective optimization software, modeFRONTIER (Esteco). The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated, through control designs, and optimized by taking into account physical and processing conditions.

Multi-Objective Optimization of Turbofan Engine Performance Using Particle Swarm Optimization (Particle Swarm Optimization을 이용한 터보팬 엔진 다목표 성능 최적화 연구)

  • Choi, Jaewon;Chung, Wonchul;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.326-333
    • /
    • 2015
  • A turbo fan engine performance analysis program combined with a particle swarm optimization(PSO) has been developed to optimize the major design parameters of the combat aircraft gas turbine engine. The optimized parameters includes bypass ratio, fan pressure ratio, high pressure compression ratio and burner exit temperature. The objective parameters have been determined using a multi-objective function consisting of the net thrust and specific fuel consumption along a weight function. The basic model for the combat aircraft gas turbine engine has been selected as the F404 turbofan engine which is widely used in the combat aircraft, F-18 and Korean high level training aircraft, T-50. The optimal conditions of four parameters have been obtained for various design conditions.

Muti-Objective Design Optimization of Self-Compacting Concrete using CCD Experimental Design and Weighted Multiple Objectives Considering Cost-Effectiveness (비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO))

  • Do, Jeongyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.26-38
    • /
    • 2020
  • Mixture design of self-compacting concrete is a typical multi-criteria decision making problem and conventional mixture designs are based on the low level engineering method like trials and errors through iteration method to satisfy the various requirements. This study concerns with performing the straightforward multiobjective design optimization of economic SCC mixture considering relative importances of the various requirements and cost-effectives of SCC. Total five requirements of 28day compressive strength, filling ability, segregation stability, material cost and mass were taken into consideration to prepare the objective function to be formulated in form of the weighted-multiobjective mixture design optimization problem. Economic SCC mixture computational design can be given in a rational way which considering material costs and the relative importances of the requiremets and from the result of this study it is expected that the development of SCC mixtue computational design and the consequent univeral concrete material design optimization methodology can be advanced.

TOPSIS-Based Multi-Objective Shape Optimization for a CRT Funnel (TOPSIS 를 적용한 CRT 후면유리의 다중목적 형상최적설계)

  • Lee, Kwang-Ki;Han, Jeong-Woo;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.729-736
    • /
    • 2011
  • The technique for order preference by similarity to ideal solution (TOPSIS) is regarded as a classical method of multiple attribute decision making (MADM), often used to solve various decision-making or selection problems. It is based on the concept that the chosen alternative should have the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution. The TOPSIS can be applied to a design process for carrying out multi-objective shape optimization wherein the best and worst alternatives are to be decided. In this paper, multi-objective shape optimization using the TOPSIS and Rational Bezier curve was applied to the funnel of a cathode-ray tube (CRT). In order to minimize the weight and first principal stress, a new multi-objective shape optimization methodology is proposed, wherein the relative-closeness coefficients of the TOPSIS are defined as the performance indices of a multi-objective function and evaluated by response surface models. This methodology enables the designer to decide on the best solution from a number of design specification groups by examining the various conflicts between the weight and the first principal stress.

Multi-objective Optimum Structural Design of Marine Structure Considering the Productivity

  • Lee, Joo-Sung;Han, Jeong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • It is necessary to develop an efficient optimization technique to optimize engineering structures that have given design spaces, discrete design values, and several design goals. In this study, an optimum algorithm based on the genetic algorithm was applied to the multi-object problem to obtain an optimum solution that simultaneously minimizes the structural weight and construction cost of panel blocks in ship structures. The cost model was used in this study, which includes the cost of adjusting the weld-induced deformation and applying the deformation control methods, in addition to the cost of the material and the welding cost usually included in the normal cost model. By using the proposed cost model, more realistic optimum design results can be expected.

A LP-based Optimal Power Flow Using Multi-segment Curve Method (Multi-segment curve method를 이용한 선형계획법 기반 최적 조류계산)

  • Ha, Dong-Wan;Kim, Chang-Su;Song, Kyung-Bin;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.200-202
    • /
    • 1999
  • This paper describes the optimization problem of real power rescheduling and present an algorithm based linear programming for studying the load-shedding and generation reallocation problem when a portion of the transmission system is disabled and at power flow solution cannot be obtained for the overload of some lines. And in case initial is infeasible, solution could not be converge. So this paper gives an algorithm being lie infeasible quantities within limit. The paper describes a LP-based algorithm to obtain the solution in power dispatch related to overload situations in power system and it is easily extened under various objective. The optimization procedures is based in linear programming with bounded variables and use the multi-segment curve method for a objective function and the validity of the algorithm is verified with two examples : 10-bus system and 57-bus system.

  • PDF

A Study on the Power Expansion Planning Model using Multi-criteria Decision Making Rule (다기준 의사결정 모형을 이용한 전력수급계획 모형에 관한 연구)

  • Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.462-466
    • /
    • 2009
  • The power expansion planning is large and capital intensive capacity planning. In the past, the expansion planning was established with the proper supply reliability in order to minimize social cost. However, the planning can't use cost minimizing objective function in the power markets with many market participants. This paper proposed the power expansion planning model using multi-criteria decision rule. This model used multi objective function considering not only cost minimizing but also GENCO's intension. This paper compared proposed model with WASP model in order to verify the result of proposed model.

Design Optimization of a Channel Roughened by Dimples Using Weighted Average Surrogate Model (가중평균 대리모델을 사용한 딤플 유로의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • Staggered dimples printed on opposite walls of an internal cooling channel are formulated numerically and optimized to enhance heat transfer performance. Nusselt number and friction factor based objectives are considered and a weighted average surrogate model is used to approximate the data generated by numerical simulation. The dimpled channel shape is defined by three geometric design variables, and the design point within design space are selected using Latin hypercube sampling. A weighted-sum method for multi-objective optimization is applied to integrate multiple objectives into a single objective. By the optimization, the objective function value is improved largely and heat transfer rate is increase much higher than pressure loss increase due to shape deformation. Channel with vertically non-symmetric optimum dimples is tested and found that the best appears if dimples on opposite wall are displaced by one quarter of dimple spacing.