• Title/Summary/Keyword: Multi-objective Programming

Search Result 161, Processing Time 0.026 seconds

A Mathematical Programming Approach for Block Storage Problem in Shipbuilding Process (수리 모형을 이용한 조선 산업에서의 블록 적치장 최적 운영 계획 도출)

  • Ha, Byung-Hyun;Son, Jung-Ryoul;Cho, Kyu Kab;Choi, Byung-Cheon
    • Korean Management Science Review
    • /
    • v.30 no.3
    • /
    • pp.99-111
    • /
    • 2013
  • This paper studies the scheduling problem of storing and retrieving assembly blocks in a temporary storage yard. The objective is to minimize the number of relocations of blocks while the constraints for storage and retrieval time windows are satisfied. We present an integer programming model based on multi-commodity network flows, and the three revised models based on the properties of the problem. We show that the revised models are more efficient than the generic model through the numerical experiments.

Optimal Force Distribution for Quadruped Walking Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇을 위한 최적 힘 배분)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.614-620
    • /
    • 2009
  • The force distribution in multi-legged robots is a constrained, optimization problem. The solution to the problem is the set points of the leg contact forces for a particular system task. In this paper, an efficient and general formulation of the force distribution problem is developed using linear programming. The considered walking robot is a quadruped robot with a locked-joint failure, i.e., a joint of the failed leg is locked at a known place. For overcoming the drawback of marginal stability in fault-tolerant gaits, we define safety margin on friction constraints as the objective function to be maximized. Dynamic features of locked-joint failure are represented by equality and inequality constraints of linear programming. Unlike the former study, our result can be applied to various forms of walking such as crab and turning gaits. Simulation results show the validity of the proposed scheme.

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.

The automated optimum design of steel truss structures (철골 트러스 구조의 자동화 최적설계)

  • Pyeon, Hae-Wan;Kim, Yong-Joo;Kim, Soo-Won;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.143-155
    • /
    • 2001
  • Generally, truss design has been determined by the designer's experience and intuition. But if we perform the most economical structural design we must consider not only cross-sections of members but also configurations(howe, warren and pratt types etc.) of single truss as the number of panel and truss height. The purpose of this study is to develope automated optimum design techniques for steel truss structures considering cross-sections of members and shape of trusses simultaneously. As the results, it could be possible to find easily the optimum solutions subject to design conditions at the preliminary structural design stage of the steel truss structures. In this study, the objective function is expressed as the whole member weight of trusses, and the applied constraints are as stresses, slenderness ratio, local buckling, deflection, member cross-sectional dimensions and truss height etc. The automated optimum design algorithm of this study is divided into three-level procedures. The first level on member cross-sectional optimization is performed by the sequential unconstrained minimization technique(SUMT) using dynamic programming method. And the second level about truss height optimization is applied for obtaining the optimum truss height by three-equal interval search method. The last level of optimization is applied for obtaining the optimum panel number of truss by integer programming method. The algorithm of multi-level optimization programming technique proposed in this study is more helpful for the economical design of plane trusses as well as space trusses.

  • PDF

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF

Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization With a Priori Preference Information (피로수명예측을 위한 반응표면근사화와 순위선호정보를 가진 다기준최적설계에의 응용)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.114-126
    • /
    • 2009
  • In this paper, a versatile multi-criteria optimization concept for fatigue life prediction is introduced. Multi-criteria decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

Practical Optimization Methods for Finding Best Recycling Pathways of Plastic Materials

  • Song, Hyun-Seob;Hyun, Jae Chun
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • Optimization methodologies have been proposed of find the best environment-friendly recycling pathways of plastic materials based on life-cycle assessment (LCA) methodology. The main difficulty in conducting this optimization study is that multiple environmental burdens have to be considered simultaneously as the cost functions. Instead of generating conservative Pareto or noninferior solutions following multi-objective optimization approaches, we have proposed some practical criteria on how to combine the different environmental burdens into a single measure. The obtained single objective optimization problem can then be solved by conventional nonlinear programming techniques or, more effectively, by a tree search method based on decision flows. The latter method reduces multi-dimensional optimization problems to a set of one-dimensional problems in series. It is expected the suggested tree search approach can be applied to many LCA studies as a new promising optimization tool.

  • PDF

Integrated Optimal Design of Hybrid Structural Control System using Multi-Stage Goal Programming Technique (다단계 목표계획법을 이용한 복합구조제어시스템의 통합최적설계)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.93-102
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system may be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. In the multi-stage goal programming, design targets(or goals) are at first selected too correspond too several stages and the objective function is th n defined as the sum of the normalized distances between these design goals and each of the physical values, that is, the inter-story drifts and the capacities of the control system. Finally, the goal-updating genetic algorithm searches for optimal solutions satisfying each stage of design goals and, if a solution exists, the levels of design goals are consecutively updated to approach the global optimal solution closest too the higher level of desired goals. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

Optimization for the Design Parameters of Electric Locomotive Overhaul Maintenance Facility (전기 기관차 중수선 시설의 설계 변수 최적화)

  • Um, In-Sup;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2010
  • In this paper, we propose a optimization approach for the Electric Locomotive Overhaul Maintenance Facility (ELOMF), which aims at the simulation optimization so as to meet the design specification. In simulation design, we consider the critical path and sensitivity analysis of the critical (dependent) factors and the design (independent) parameters for the parameter selection and reduction of the metamodel. Therefore, we construct the multi-objective non-linear programming. The objective function is normalized for the generalization of design parameter while the constraints are composed of the simulation-based regression metamodel for the critical factors and design factor's domain. Then the effective solution procedure based on the pareto optimal solution set is proposed. This approach provides a comprehensive approach for the optimization of Train Overhaul Maintenance Facility(TOMF)'s design parameters using the simulation and metamoels.

Task Allocation of Intelligent Warehouse Picking System based on Multi-robot Coalition

  • Xue, Fei;Tang, Hengliang;Su, Qinghua;Li, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3566-3582
    • /
    • 2019
  • In intelligent warehouse picking system, the allocation of tasks has an important influence on the efficiency of the whole system because of the large number of robots and orders. The paper proposes a method to solve the task allocation problem that multi-robot task allocation problem is transformed into transportation problem to find a collision-free task allocation scheme and then improve the capability of task processing. The task time window and the power consumption of multi-robot (driving distance) are regarded as the utility function and the maximized utility function is the objective function. Then an integer programming formulation is constructed considering the number of task assignment on an agent according to their battery consumption restriction. The problem of task allocation is solved by table working method. Finally, simulation modeling of the methods based on table working method is carried out. Results show that the method has good performance and can improve the efficiency of the task execution.