• Title/Summary/Keyword: Multi-nozzle combustion system

Search Result 6, Processing Time 0.023 seconds

Stabilization of Fuel F1ow in a Multi-Nozzle Combustion System Burning Natural Gas (천연가스 다노즐 열원설비의 연료 유동 안정화)

  • 박의철;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1255-1265
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient flow in a utility gas turbine burning natural gas. The solution domain encompasses the supply gas pressure regulator to the combustor of the gas turbine that employs multi-nozzle fuel injectors. Some results produced for verification in the present study agree suite well with the experimental ones. It is found that the total gas flow may decrease noticeably during its combustion mode change, which would be the reason of momentary combustion upset, when a reference case of opening ratios of control valves in the system is applied. Several parameters are then varied in order to make the total gas flow stable over that period of time. Results of this study may be useful to understand the unsteady behavior of combustion system burning natural gas.

  • PDF

Effect of Fuel Nozzle Configuration on the Reduction of NOx Emission in Medium-speed Marine Diesel Engine (연료분사 노즐 형상이 선박용 중형 디젤 엔진의 NOx에 미치는 영향 연구)

  • Yoon, Wook-Hyeon;Kim, Byong-Seok;Ryu, Sung-Hyup;Kim, Ki-Doo;Ha, Ji-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-14
    • /
    • 2005
  • Multi-dimensional combustion analysis and experiment has been carried out to investigate the effects of the injector nozzle hole diameter and number on the NOx formation and fuel consumption in HYUNDAI HiMSEN engine. The behavior of spray and combustion phenomena in diesel engine was examined by FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation. Wallfilm model suggested by Mundo, et al. and auto-ignition model suggested by Theobald and Cheng were adopted to investigate the spray-wall interaction characteristics and ignition delay. The information of spray angle and spray tip penetration length was extracted from fuel spray visualization experiment and the fuel injection rate profile was extracted from fuel injection system experiment as an input and verification data for the combustion analysis. Next, the nine different nozzle configurations were simulated to evaluate the effect of injector hole diameter and number on the NOx formation and fuel consumption.

  • PDF

Study for combustion characteristic according to the O/F ratio of low thrust rocket engine using green propellant (친환경 추진제를 사용하는 저추력 엑체로켓엔진의 혼합비에 따른 연소 특성)

  • Jeon, Jun-Su;Kim, Young-Mun;Hwang, O-Sik;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.134-137
    • /
    • 2009
  • Combustion tests of a low thrust rocket engine was performed to get combustion characteristics, which used a high concentrated hydrogen peroxide and kerosene as the oxidizer and fuel. The engine consisted of multi injector(six coaxial swirl injectors), chamber, nozzle and catalyst ignition system. The test was carried out by changing O/F ratio from 3.8 to 11.0. The experimental results showed that combustion efficiency was highest at O/F ratio from 5 to 6 and pressure fluctuations of all the range were lower than 5%.

  • PDF

Icing Characteristics of Liquid Phase LPG Injection According to Butane and Propane Mixing Rates (부탄과 프로판 혼합비율에 따른 액상 LPG 분사시 Icing 특성)

  • Kim, Yung-Jin;Cho, Won-Joon;Lee, Ki-Hyung
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.146-151
    • /
    • 2011
  • LPG(Liquified Petroleum Gas) fuel for vehicles has lots of advantages such as low emission level, cheaper fuel cost and enough infrastructure. Therefore it arouses interest as an alternative engine to reduce emission of diesel engines. Especially MPI(Multi Point Injection) type LPLi(Liquid Phase LPG injection) system could have overcome the disadvantages of mixer types such as low engine performance, decreased charging efficiency and cold starting difficulty. However ice formation on the nozzle tip and intake port due to the freezing of moisture around the components is often observed in LPLi systems. This icing phenomenon is the direct cause of unstable engine combustion, resulting in engine emissions. Therefore in this research, a spray visualization test for LPG injection was carried out to obtain the basic information of an LPLi injector, then the effects of butane and propane mixing rates on ice formation at the intake port and nozzle tip was investigated. As a result, the icing characteristics of them showed contrary results according to the mixing rates.

Experimental Study of Effect of CO2 Addition on Oxy-Fuel Combustion in Triple Concentric Multi-Jet Burner (다공 동축 버너를 이용한 순산소 연소에서 CO2 첨가가 화염에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hwan;Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • The use of oxy-fuel combustion and flue gas recirculation (FGR) for $CO_2$ reduction has been studied by many researchers. This study focused on the characteristics of oxy-fuel combustion and the effects of $CO_2$ addition from the point of view of oxygen feeding ratio (OFR) and the position of $CO_2$ addition in order to reproduce an FGR system with a triple concentric multi-jet burner. Oxy-fuel combustion was stable at all OFRs at a fuel flow-rate of 15 lpm, which corresponds to an equivalence ratio of 0.93; however, the structure and length of the flame varied at different OFRs. When $CO_2$ was added in oxy-fuel combustion, various stability modes such as stable, transient, quasistable, unstable, and blow-out were observed. The temperature in the combustion chamber decreased upon $CO_2$ addition in all conditions, and the maximum reduction in temperature was below 1800 K. $CO_2$ concentration with respect to height varied with the volume percent of $CO_2$ at the nozzle tip.