• Title/Summary/Keyword: Multi-material structure

Search Result 532, Processing Time 0.022 seconds

A study on color characteristics of Multi-color functional Rapid Prototypes Using laser stereolithography (광조형을 이용한 다색 기능성 시작품의 색상특성에 관한 연구)

  • 조진구;정해도;손재혁;임용관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.824-828
    • /
    • 2000
  • As production cycle has become more and more shorter, the demand of rapid prototyping technology has increased largely. There are many methods for rapid prototyping technology, such as SLA. SLS, FDM. INK JET, LOM and so on. Of all methods, SLA has been most widely used for fabricating precision parts. But products manufactured by this method have limitation of single color and single material. So the principal purpose of this study is to overcome the limit of single color product. If the internal structure of manufactured product is visible with multi-color characteristic, it is possible to check easily the designed model with reality. In order to give multi-color characteristic to the product, photocurable resin mixed with pigment is used in this study. First, transparency of photocurable resin without pigment is evaluated, and then color characteristic and curing characteristic of the mixture is evaluated changing mixing ratio. Through the basic experiments, it becomes possible to fabricate multi-color 3D prototype without assembly.

  • PDF

Prediction models of the shear modulus of normal or frozen soil-rock mixtures

  • Zhou, Zhong;Yang, Hao;Xing, Kai;Gao, Wenyuan
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.783-791
    • /
    • 2018
  • In consideration of the mesoscopic structure of soil-rock mixtures in which the rock aggregates are wrapped by soil at normal temperatures, a two-layer embedded model of single-inclusion composite material was built to calculate the shear modulus of soil-rock mixtures. At a freezing temperature, an interface ice interlayer was placed between the soil and rock interface in the mesoscopic structure of the soil-rock mixtures. Considering that, a three-layer embedded model of double-inclusion composite materials and a multi-step multiphase micromechanics model were then built to calculate the shear modulus of the frozen soil-rock mixtures. Given the effect of pore structure of soil-rock mixtures at normal temperatures, its shear modulus was also calculated by using of the three-layer embedded model. Experimental comparison showed that compared with the two-layer embedded model, the effect predicted by the three-layer embedded model of the soil-rock mixtures was better. The shear modulus of the soil-rock mixtures gradually increased with the increase in rock regardless of temperature, and the increment rate of the shear modulus increased rapidly particularly when the rock content ranged from 50% to 70%. The shear modulus of the frozen soil-rock mixtures was nearly 3.7 times higher than that of the soil-rock mixtures at a normal temperature.

Displacement Current Properties for Nano Structure Dendrimer (나노구조 덴드리머의 변위전류 특성)

  • Song, Jin-Won;Choi, Yong-Sung;Lee, Woo-Ki;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.52-54
    • /
    • 2006
  • In the Langmuir-Blodgett (LB) technique, a monolayer on the water surface is transferred onto a substrate, which is raised and dipped through the surface. From this, multi layers can be obtained in which constituent molecules are periodically arranged. The LB technique has attracted considerable interest in the fabrication of electrical and electronic devices. Many researchers have investigated the electrical properties of monolayer and multiplayer films. Dendrimers represent a new class of synthetic macromolecules characterized by a regularly branched treelike structure. Multiple branching yields a large number of chain ends that distinguish dendrimers from conventional star-like polymers and microgels. The azobenzene dendrimer is one of the dendritic macromolecules that include the azo-group exhibiting a photochromic character. Due to the presence of the charge transfer element of the azo-group and its rod-shaped structure, these compounds are expected to have potential interest in electronics and ptoelectronics, especially in nonlinear optics. In the present paper, we give pressure stimulation to organic thin films and detect the induced displacement current.

  • PDF

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

Results and implications of the damage index method applied to a multi-span continuous segmental prestressed concrete bridge

  • Wang, Ming L.;Xu, Fan L.;Lloyd, George M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.37-51
    • /
    • 2000
  • Identification of damage location based on modal measurement is an important problem in structural health monitoring. The damage index method that attempts to evaluate the changes in modal strain energy distribution has been found to be effective under certain circumstances. In this paper two damage index methods using bending strain energy and shear strain energy have been evaluated for numerous cases at different locations and degrees of damage. The objective is to evaluate the feasibility of the damage index method to localize the damage on large span concrete bridge. Finite element models were used as the test structures. Finally this method was used to predict the damage location in an actual structure, using the results of a modal survey from a large concrete bridge.

Analysis of Rotor Dynamic Characteristics of AC Traction Motor (전동차용 AC 견인전동기의 진동특성해석)

  • 정춘상;배동진;신상엽;이충동
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.348-354
    • /
    • 1999
  • An AC traction motor was developed, of which the rotor core has an unique structure, made of multi-layered silicon steel plates which were shrink-fitted to a shart. the equivalenet material properties were estimated with a newly proposed efficient method, based on the correlation between finite element analysis results and modal testing. A general rotordynamic analysis for the rotor with the equivalent material properties was carried out to evaluate the structural integrity of the virtually built-up motor.

  • PDF

Modeling and Analysis of Cushioning Performance for Multi-layered Corrugated Structures

  • Park, Jong Min;Kim, Ghi Seok;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Choi, Won Sik;Kim, Jong Soon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.221-231
    • /
    • 2016
  • Purpose: The objective of this study was to develop cushion curves models and analyze the cushioning performance of multi-layered corrugated structures (MLCS) using a method based on dynamic stress-energy relationship. Methods: Cushion tests were performed for developing cushion curve models under 12 combinations of test conditions: three different combinations of drop height, material thickness, and static stress for each of four levels of energy densities between 15 and $60kJ/m^3$. Results: Dynamic stress and energy density for MLCS followed an exponential relationship. Cushion curve models were developed as a function of drop height, material thickness, and static stress for different paperboards and flute types. Generally, the differences between the shock pulse (transmitted peak acceleration) and cushion curve (position and width of belly portion) for the first drop and the averaged second to fifth drop were greater than those for polymer-based cushioning materials. Accordingly, the loss of cushioning performance of MLCS was estimated to be greater than that of polymer-based cushioning materials with the increasing number of drops. The position of the belly of the cushion curve of MLCS tends to shift upward to the left with increasing drop height, and the belly portion became narrower. However, depending on material thickness, under identical conditions, the cushion curve of MLCS showed an opposite tendency. Conclusions: The results of this study can be useful for environment-friendly and optimal packaging design as shock and vibrations are the key factors in cushioning packaging design.

Construction of BIBFRAME-Based Linking Structure for Interrelating Bibliographic Records for Alternative Format Materials (대체자료 서지레코드 연결을 위한 BIBFRAME 기반 연계 구조 구축)

  • Lee, Seungmin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.3
    • /
    • pp.281-301
    • /
    • 2021
  • Bibliographic records for alternative format materials using a flat bibliographic structure based on unit record have limitations in that they cannot be linked with other related resources in record level, which makes it difficult to secure sufficient access to alternative format materials for people with disabilities. In order to address this problem, this research constructed a linking structure which adopted FRBR-based BIBFRAME structure to establish a bibliographic structure that can interrelate the bibliographic records with flat structure and the multi-level BIBFRAME structure. This research proposed a linking bibliographic structure that enables interlinking between bibliographic records for related alternative format materials by composing upper-level linking property categories and interconnecting them to classes and properties of BIBFRAME.

Comparison of the I-V Characteristic as Various Composition ratio of Iodine in a-Se of $BrO_2/a-Se$ based Radiation Conversion Sensor ($BrO_2/a-Se$ 구조의 방사선 변환센서에서 a-Se에 첨가된 조성비 변화에 따른 I-V 특성 비교)

  • Choi, Jang-Yong;Park, Ji-Koon;Gong, Hyun-Gi;Ahn, Sang-Ho;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.440-443
    • /
    • 2002
  • Present1y the X-Ray diagnosis system is a real condition that is changing by digital ways in it's existent analog ways. This digital radiation detector is divided by the direct method and the indirect method. The indirect method of applied voltage has special qualities that the resolution is low than direct method by diffusion effect that happens. The conversion process ( radiation${\rightarrow}$visible ray${\rightarrow}$electrical signal of two times, has shortcomings that the energy conversion efficiency of electrical signal is low. The direct method has shortcomings that need strong electric fie1d to detect electrical signal efficiently. This research achieved to develop digital detector of the Hybrid method that have form that mixes two ways to supplement shortcoming of direct. indirect method. A studied electrical characteristic by Iodine's Mixture ratio change is added to selenium in the detector which has a multi-layer structure (Oxybromide + a-Se). There are 8 kinds of Manufactured compositions to amorphous selenium Iodine each 30ppm, 100ppm, 200 ppm, 300ppm, 400ppm, 500ppm, 600ppm, 700ppm by a doped photoconductor through a vacuum thermal evaporation method. The phosphor layer is consisted of Oxybromide ($BrO_2$) which uses optical adhesives multi-layer structure. The manufactured compositions calculates and compares Net Charge and signal to noise ratio measuring Photocurrent about Darkcurrent and X-ray. When doped Iodine Mixture ratio is 500ppm to the multi-layer structure (Oxybromide + a-Se), applied voltage of $3V/{\mu}m$, leakage current of compositions $2.61nA/cm^2$ and net charge value by 764pC/$cm^2$/mR then the best result appeared.

  • PDF

Temperature Analysis of the Cylindrical Structure with Multi-Holes of HANARO Irradiation Test (하나로 조사시험용 다공 원통헝 구조물의 온도해석)

  • Choi Young-Jin;Kang Young-Hwan;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.405-412
    • /
    • 2004
  • During the irradiation tests of material and fuel rod, all components of the cylindrical structure with multiple holes act like heat sources due to high gamma heat and fission heat. The objective of this study is to formulate the general solution for the temperature distribution to estimate the thermal integrity of structure during irradiation tests. For the temperature distribution analysis, the two-dimensional heat conduction theory is used. The unmerical analysis is performed by the commercial finite element analysis code, ANSYS 6.1. If the cylindrical structure with hole number would not exceed three holes, the analysis results and finite element results are good agreement together. For the structure with four holes, the discrepancy between FE results and analysis results of the structural temperature distribution is increased.