• Title/Summary/Keyword: Multi-material simulation

Search Result 327, Processing Time 0.027 seconds

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

Development of Multi-layered TiO2/Al, Cr/TiO2 Pearl Pigment Processed by DC and RF Magnetron Sputtering Process (DC와 RF Magnetron Sputtering 공법을 이용한 다층 TiO2/Al, Cr/TiO2 진주안료 개발)

  • Jeong Jae-Il;Lee Jeong-Hun;Jang Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.764-768
    • /
    • 2006
  • For the possible application of pearl pigment, multi-layered $TiO_2/Al,\;Cr/TiO_2$ thin film were deposited on $SiO_2$ substrate by using sputtering method, $TiO_2$ and Al or Cr was selected as a possible high and low refraction material at the film interface respectively. Optical properties including color effect were systematically studied in terms of different film thickness and film layers by using spectrometer. In order to expect the experimental results, the simulation program, the Essential Macleod Program(EMP) was adopted and compared with the experimental data. The film consisting of $TiO_2/Al,\;Cr/TiO_2$ layers shows a wavelength range of $430{\sim}760nm$, typically color ranges between bluish purple and red. It was confirmed that this experimental result was quite well consistent with the experimental one.

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

Coupled diffusion of multi-component chemicals in non-saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Xi, Yunping
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.201-222
    • /
    • 2013
  • A comprehensive simulation model for the transport process of fully coupled moisture and multi-species in non-saturated concrete structures is proposed. The governing equations of moisture and ion diffusion are formulated based on Fick's law and the Nernst-Planck equation, respectively. The governing equations are modified by explicitly including the coupling terms corresponding to the coupled mechanisms. The ionic interaction-induced electrostatic potential is described by electroneutrality condition. The model takes into account the two-way coupled effect of moisture diffusion and ion transport in concrete. The coupling parameters are evaluated based on the available experimental data and incorporated in the governing equations. Differing from previous researches, the material parameters related to moisture diffusion and ion transport in concrete are considered not to be constant numbers and characterized by the material models that account for the concrete mix design parameters and age of concrete. Then, the material models are included in the numerical analysis and the governing equations are solved by using finite element method. The numerical results obtained from the present model agree very well with available test data. Thus, the model can predict satisfactorily the ingress of deicing salts into non-saturated concrete.

Multi-scale Process-structural Analysis Considering the Stochastic Distribution of Material Properties in the Microstructure (미소 구조 물성의 확률적 분포를 고려한 하이브리드 성형 공정 연계 멀티스케일 구조 해석)

  • Jang, Kyung Suk;Kim, Tae Ri;Kim, Jeong Hwan;Yun, Gun Jin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2022
  • This paper proposes a multiscale process-structural analysis methodology and applies to a battery housing part made of the short fiber-reinforced and fabric-reinforced composite layers. In particular, uncertainties of the material properties within the microscale representative volume element (RVE) were considered. The random spatial distribution of matrix properties in the microscale RVE was realized by the Karhunen-Loeve Expansion (KLE) method. Then, effective properties of the RVE reflecting on spatially varying matrix properties were obtained by the computational homogenization and mapped to a macroscale FE (finite element) model. Morever, through the hybrid process simulation, a FE (finite element) model mapping residual stress and fiber orientation from compression molding simulation is combined with one mapping fiber orientation from the draping process simulation. The proposed method is expected to rigorously evaluate the design requirements of the battery housing part and composite materials having various material configurations.

Structural Analysis of Overloaded Multi-aerial Platform (과하중 상태에 있는 복합 굴절차의 구조 해석)

  • So, Soo-Hyun;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.901-907
    • /
    • 2013
  • The development of high-rise firefighting vehicles warrants thorough structural analysis for ensuring vehicle stability. A few structural analyses were carried out using CAD data, material properties, load conditions, and boundary conditions for evaluating the structural stability of an overloaded multi-aerial platform for firefighting and rescue. Structural analysis was performed with an analytical model consisting of a turntable, six booms, two jib booms, and a basket structure. This model was operated in eight modes. All simulation was performed using NASTRAN, a commercial code. As a result, we confirm that the position of local stress exceeds that of the yield strength. Therefore, stress concentration relaxation is possible by introducing reinforcing boom structures, changing the shape, or imparting a larger moment of inertia to the booms' cross sections.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (I-Theoretical analysis)

  • He, Xiao-Yu;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.157-174
    • /
    • 2016
  • Based on classical viscoelastic damper, a brand-new damper is designed by the change of simple construction to implement vibration control for both translational vibration and rotational vibration simultaneously. Theoretic analysis has been carried out on the restoring force model and the control parameters. Two improved models are presented to obtain high simulation precision. The influence of the size, shape of the viscoelastic material, the ambient temperature and the response frequency on the vibration control effect is analyzed. The numerical results show that the new type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform and the response control effect has complicated relations with aforementioned related factors.

Modeling and Analysis of a Multi Bossed Beam Membrane Sensor for Environmental Applications

  • Arjunan, Nallathambi;Thangavelu, Shanmuganantham
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.25-29
    • /
    • 2017
  • This paper presents a unique pressure sensor design for environmental applications. The design uses a new geometry for a multi bossed beam-membrane structure with a SOI (silicon-on-insulator) substrate and a mechanical transducer. The Intellisuite MEMS CAD design tool was used to build and analyze the structure with FEM (finite element modeling). The working principle of the multi bossed beam structure is explained. FEM calculations show that a sensing diaphragm with Mises stress can provide superior linear response compared to a stress-free diaphragm. These simulation results are validated by comparing the estimated deflection response. The results show that, the sensitivity is enhanced by using both the novel geometry and the SOI substrate.

Forming Simulation of Extru-Bending Process Using Multi-Billets (멀티빌렛을 사용한 압출굽힘가공의 성형 해석)

  • Park D. Y.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.120-123
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets inside die chamber after passing the multi-hole container. The curvature can be controlled by the two variables, the one of them is the different velocity of billets through the multi-hole container, the other is the difference of hole diameter. The bending phenomenon during extruding using four billets can be obtained by the difference of hole diameters in the multi-hole container or by the difference of relative velocity of billet inserted in the container. As results of DEFORM-3D analysis, it can be shown that bending can be obtained during extruding by the difference of relative velocity of two billets or by the difference of hole diameter, and the amount of curvature is increased by the difference of velocity and diameter. According to the shape of products, the curvature of rectangular section is bigger than the curvature of regular square section. And, it is estimated that, because the stress on the welding line is much higher than yield stress of material, the bonding of four billets can be obtained.

  • PDF

Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding (전자기 용접의 충돌 속도에 대한 코일 형상의 영향)

  • Park, H.;Lee, K.;Lee, J.;Lee, Y.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.