• Title/Summary/Keyword: Multi-material flow

Search Result 145, Processing Time 0.026 seconds

ADAPTIVE MOMENT-OF-FLUID METHOD : A NEW VOLUME-TRACKING METHOD FOR MULTIPHASE FLOW COMPUTATION

  • Ahn, Hyung-Taek
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • A novel adaptive mesh refinement(AMR) strategy based on the Moment-of-Fluid(MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The adaptive mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroids given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

Analysis of I-V Characteristics in the Multi-channel Superconducting Vortex Flow Transistor (다채널 고온 초전도 볼텍스 유동 트랜지스터의 I-V 특성 해석)

  • 고석철;강형곤;임성훈;최효상;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.931-937
    • /
    • 2003
  • The principle of the superconducting vortex flow transistor (SVFT) is based on control of the Abrikosov vortex flowing along a channel. The induced voltage is controlled by a bias current and a control current, instead of external magnetic field. The device is composed of parallel weak links with a nearby current control line. We explained the process to get an I-V characteristic equation and described the method to induce the external and internal magnetic field by the Biot-Savarts law in this paper. The equation can be used to predict the I-V curves for fabricated device. From the equation we demonstrated that the current-voltage characteristics were changed with input parameters. I-V characteristics were simulated to analyze a SVFT with multi-channel by a computer program.

A Real Time Integrated Dispatching Logic for Semiconductor Material Flow Control Considering Multi-load Automated Material Handling System (반도체 물류 제어 시스템을 위한 반송장비의 다중적재를 고려한 실시간 통합 디스패칭 로직)

  • Suh, Jungdae;Faaland, Bruce
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.3
    • /
    • pp.296-307
    • /
    • 2008
  • A semiconductor production system has sophisticated manufacturing operations and needs high capital investment for its expensive equipment, which warrants efficient real-time flow control for wafers. In the bay, we consider material handling equipment that can handle multiple carriers of wafers. The dispatching logic first determines the transportation time of each carrier to its destination by each unit of transportation equipment and uses this information to determine the destination machine and target carrier. When there is no available buffer space at the machine tool, the logic allows carriers to stay at the buffer of a machine tool and determine the delay time, which is used to determine the destination of carriers in URL. A simulation study shows this dispatching logic performs better than the procedure currently in use to reduce the mean flow time and average WIP of wafers and increase efficiency of material handling equipment.

Deformation Characteristics of an Automotive Outer Door Panel by Vacuum-assisted Incremental Sheet Forming using Multi-tool paths (진공점진성형에서 복합공구경로가 차량용 외판부 도어패널의 변형특성에 미치는 영향 분석)

  • H.W. Youn;N. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.208-214
    • /
    • 2023
  • This paper discusses the deformation characteristics of a scaled-down automotive outer door panel with vacuum-assisted incremental sheet forming. The vacuum condition between the die and Al6052-H32 sheet with a thickness of 1.0 mm is reviewed with the goal of improving the geometrical accuracy of the target product. The material flow according to the forming tool path, including the multi-tool path and conventional contour tool path, is investigated considering the degradation of the pillow effect. To reduce friction between the tool and the sheet during incremental forming, automotive engine oil (5W-30) is used as a lubricant, and the strain field on the surface of the formed product is analyzed using ARGUS. By comparing the geometry and material flow characteristics of products under different test conditions, it is confirmed that the product surface quality can be significantly improved when the vacuum condition is employed in conjunction with a multi-tool path strategy.

Development of Web-based Simulator for Supply Chain Network with Reconfigurable Manufacturing System and Multi-layered Distribution Center (재구성가능 제조시스템과 다계층 구조를 가지는 분배센터로 구성된 공급사슬망을 위한 웹기반 시뮬레이터 개발)

  • Seo, Min-Seok;Lim, Dae-Eun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.279-288
    • /
    • 2011
  • The past researches focused on the supply chain network that consists of factories, distribution centers and retailers for single product type. This research is required because the factory for single product type is advanced to reconfigurable type in order to produce various products, according to customers' various purchase forms and time. This research is also required because in the past researches, the material flows from factories to distribution centers and from distribution centers to retailers, but recently, there are material flows between distribution centers. The supply chain network in this research consists of reconfigurable manufacturing system, multi-layered distribution centers, and retailers. A simulator is developed to analyze the material flow on the supply chain network. The developed simulator is web-based designed by using Java Server Page and MS-SQL, so as to maximize the convenience for users.

Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow

  • Park, Sung-Woo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.559-573
    • /
    • 2012
  • An adaptive modeling and simulation technique is introduced for the effective and reliable fluid-structure interaction analysis using MSC/Dytran for large-scale complex pressurized liquid containment. The proposed method is composed of a series of the global rigid sloshing analysis and the locally detailed fluid-structure analysis. The critical time at which the system exhibits the severe liquid sloshing response is sought through the former analysis, while the fluid-structure interaction in the local region of interest at the critical time is analyzed by the latter analysis. Differing from the global coarse model, the local fine model considers not only the complex geometry and flexibility of structure but the effect of internal pressure. The locally detailed FSI problem is solved in terms of multi-material volume fractions and the flow and pressure fields obtained by the global analysis at the critical time are specified as the initial conditions. An in-house program for mapping the global analysis results onto the fine-scale local FSI model is developed. The validity and effectiveness of the proposed method are verified through an illustrative numerical experiment.

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

Operation-sequence-based Approach for Designing a U-shaped Independent-Cell System with Machine Requirement Incorporated (설비능력과 작업순서를 고려한 U-라인상에서의 셀 시스템 설계)

  • 박연기;성창섭;정병호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.1
    • /
    • pp.71-85
    • /
    • 2001
  • This paper considers a cost model for a U-shaped manufacturing cell formation which incorporates a required number of machines and various material flows together under multi-part multi-cell environment. The model is required to satisfy both the specified operation sequence of each part and the total part demand volume, which are considered to derive material handling cost in U-shaped flow line cells. In the model several cost-incurring factors including set-up for batch change-over, processing time for operations of each part, and machine failures are also considered in association with processing load and capacity of each cell. Moreover, a heuristic for a good machine layout in each cell is newly proposed based on the material handling cost of each alternative sequence layout. These all are put together to present an efficient heuristic for the U-shaped independent-cell formation problem, numerical problems are solved to illustrate the algorithm.

  • PDF

The Crack Resistance and the Dielectric Breakdown properties of Epoxy Composities due to the Multi Stresses Variation (다중 응력 변화에 따른 에폭시 복합체의 내크랙성 및 절연 파괴 특성)

  • 송봉철;김상걸;안준호;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.136-139
    • /
    • 2000
  • Epoxy materials are used as insulation material for electric power cables. In the case of a flow of excess current due to the temperature difference which occurs between the heat of the conductor and the atmosphere, heat degrades connection point of the cables. Also, the mechanical stress, which occurs due to the thermal expansion coefficient of cable connection electrode system and epoxy insulation materials along with the gap between thermal conduction based on the extra high voltage of transmitted voltage, increases possibility of cracks to occur. The relationship between mechanical stress and electrical breakdown mechanism is verified for the epoxy materials such as high toughness epoxy materials, which comes to be used contemporarily, and for the breakdown mechanism of epoxy materials on the multi-stresses (mechanical and electrical) due to the variation of the temperature.

  • PDF

Calculation of Material Properties with JMatPro for the Process Simulation (JMatPro를 이용한 공정해석에서의 물성계산)

  • Lee, Kyung-Hoon;Kang, Gyeong-Pil
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.142-145
    • /
    • 2008
  • Process simulation requires accurate and reliable data for a wide variety of material properties, ranging from thermal conductivity to flow stress curves. Traditionally such data are gathered from experimental sources, which has significant disadvantages in that not all of the required data is readily available, it may be from various sources that are themselves inconsistent, measurement of high temperature properties is expensive, and furthermore the properties can be sensitive to microstructure as well as to alloy composition. This article describes the development of a new multi-platform software program called JMatPro, which is based on CALPHAD methodology, for calculating the properties and behavior of multi-component alloys. A feature of the JMatPro is that the calculations are based on sound physical principles rather than purely statistical methods. Thus, many of the shortcomings of methods such as regression analysis can be overcome.

  • PDF