• Title/Summary/Keyword: Multi-loop control

Search Result 235, Processing Time 0.026 seconds

A design of a robust adaptive fuzzy controller globally stabilizing the multi-input nonlinear system with state-dependent uncertainty (상태변수 종속 불확실성이 포함된 다입력 비선형 계통에 대한 전역 안정성이 보장되는 견실한 적응 퍼지 제어기 설계)

  • Park, Young-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.297-305
    • /
    • 1996
  • In this paper a novel robust adaptive fuzzy controller for the nonlinear system with state-dependent uncertainty is proposed. The conventional adaptive fuzzy controller determines the function of state variable bounding the state-dependent uncertain term in the system dynamics on the local state space by off-line calculation. Whereas the proposed method determines that function by the fuzzy inference so that it guarantees the stability of the closed loop system globally on the whole state space. In addition, the method is applicable to the multi-input system. We applied the proposed method to the Burn Control of the Tokamak fusion reactor whose dynamics contains the state-dependent uncertainty and proved the effectiveness of the scheme by using the simulation results.

  • PDF

Design of Lateral Controller for Automatic Valet Parking and Its Performance Analysis with Respect to Vehicle Types (자동 발렛 파킹을 위한 횡방향 제어기 설계 및 차종변화에 대한 제어 성능 분석)

  • Choi, Heejae;Song, Bongsob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1051-1058
    • /
    • 2012
  • The unified lateral control algorithm for automatic valet parking for various types of vehicles is presented and its feasibility is shown experimentally via field tests for the given parking scenario. First, a trajectory generation algorithm for forward driving and backward multi-step parking maneuvers is developed. Then, with consideration of different types of vehicles and operating conditions, a kinematic vehicle model is used and validated using field test data. Using the nonlinear vehicle model, the lateral controller is designed based on dynamic surface control. Finally the proposed lateral control law is validated via hardware-in-the-loop simulations for different types of vehicles and experimentally using a test vehicle through field tests.

Implementation of Integrated Control Environment for Biped Robot(IWR-III) (이족보행로봇(IWR-III)의 통합 저어 환경 구축)

  • Noh, Gyeong-Gon;Seo, Yeong-Seop;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3089-3091
    • /
    • 1999
  • To control IWR-III Biped Waking Robot, those complex modules are necessary that concurrent control multi-axes servo motors, PID & Feedforward gain tuning, initial value calibration, display current status of system, user interface for emergency safety and three-dimensional rendering graphic visualization. It is developed for various-type gait $data^{[1]}$ and for control modes (i.e open/closed loop and pulse/velocity/torque control) that Integrated Control Enviroment with GUI( Graphic User Interface) consist of time-buffered control part using MMC (Multi-Motion Controller) and 3D simulation part using DirectX graphic library.

  • PDF

A Study of Robust Vibration Control for a Multi-Layer Structure (다층상구조물의 강인 진동제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Jung, Hae-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1212-1219
    • /
    • 2009
  • In this paper, a state feedback gain controller using linear matrix inequality(LMI) for the multi-objective synthesis is designed, in the multi-layer structure with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Invitation to Levitotion Contro: Problems Expecting a Smart Solution

  • Kim, Kook-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.316-320
    • /
    • 1993
  • Electromagnetic suspension (E.M.S) type levitation system is studied in the control system design viewpoint. Dynamic characteristics in theoretical analysis as well as hardware implementation is considered. Open loop unstable, non-linear and timevarying characteristics are reviewed in the theoretcal section, while levitation control system for multi-vehicle train as well as magnet drive system is reviewed in the practical section. This paper suggests not only some well-known problem appearing in levitation control system design but also a subtle problem and solution candidates. But there exist many unmentioned problems wating for a smart problem solver.

  • PDF

DC Servo Motor Insensitive Position System by Multi-loop Feedback Control (멀티루프 피드백 방식에 의한 직류 서보 모타의 인센서티브 (insensitive) 위치 제어기의 구성)

  • Lee, Kyu-Chan;Won, Jong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.28-31
    • /
    • 1988
  • This paper proposes a new linear adaptive position controller of DC servo motor. The proposed method can improve the drive performance and rapidly reject the state error caused by both parameter variations and force disturbance. The structure of this adaptive control method is based multiloop feedback control and model reference control. Simulation results are presented to verify the improved response when parameter variations and load disturbance give relatively significant effects to the servo system.

  • PDF

Closed-loop predictive control using periodic gain

  • Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.173-176
    • /
    • 1994
  • In this paper a closed-form predictive control which takes the intervalwise receding horizon strategy is presented and its stability properties are investigated. A slate-space form output predictor is derived which is composed of the one-step ahead optimal output prediction, input and output data of the system. A set of feedback gains are obtained using the dynamic programming algorithm so that they minimize a multi-stage quadratic cost function and they are used periodically.

  • PDF

Operating Method of Network Interpolation for Motion Control Device (모션 제어장치의 네트워크 보간 운전방법)

  • Kwak, Gun-Pyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.713-718
    • /
    • 2002
  • Motion controllers are essential components for operating industrial equipments. Compared with general industrial controllers, motion controllers allow motion control requiring greater speed and precision. This paper presents a method for controlling multi-axes motors via industrial networks. To achieve a line or arc interpolation, the master system delivers instructions to slave systems connected to the network. The network instruction transmitted from the master controller is re-interpolated by the individual slaves through sub-interpolators. The re-interpolated feedrate information is transmitted to the motion control loop in which the current position and the reference position are then calculated. In this way, the interpolation driving between control units is achieved via industrial networks.

Adaptive Model Reference Control Based on Takagi-Sugeno Fuzzy Models with Applications to Flexible Joint Manipulators

  • Lee, Jongbae;Lim, Joon-hong;Park, Chang-Woo;Kim, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.337-346
    • /
    • 2004
  • The control scheme using fuzzy modeling and Parallel Distributed Compensation (PDC) concept is proposed to provide asymptotic tracking of a reference signal for the flexible joint manipulators with uncertain parameters. From Lyapunov stability analysis and simulation results, the developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop multi-input/multi-output system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

Risk Decrease Method for Component Control System of Nuclear Power Plant (원전기기제어시스템의 위험도 감소 방안)

  • Cho, Chang-Hwan;Kim, Jung-Seon;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.227-228
    • /
    • 2007
  • 디지털기술의 발전으로 원자력발전소의 기기제어시스템은 Single-loop Control과 하드와이어드된 배선을 이용한 제어방식에서 Multi-loop Control과 통신망을 이용한 제어방식으로 변화되고 있다. 이에 따라 기기제어시스템의 단일고장발생시 플랜트 위험도가 증가하게 됨으로 플랜트 위험도 감소를 위한 연구가 필요하다. 위험도 감소를 위한 방안에는 기기제어시스템을 구성하는 기기의 신뢰도를 향상시키는 방법과 제어루프에 작동기기를 적절하게 배치하여 단일고장발생시 플랜트 위험도를 감소시키는 방법이 있다. 본 논문에서는 플랜트 위험도 감소 방안 중 작동기기 할당 방안에 대해 기술하였다.

  • PDF