• 제목/요약/키워드: Multi-loop control

검색결과 235건 처리시간 0.028초

멸티형 공조/냉동시스템의 증발기 과열도 제어 (Evaporator Superheat Control of a Multi-type Air-Conditioning/Refrigeration System)

  • 김태섭;홍금식;손현철
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.253-265
    • /
    • 2001
  • 본 논문은 멀티형 공조/냉동시스템의 증발기의 과열도(증발기 2상영역과 출구영역의 냉매기 온도차)제어를 위한 모델링과 PI제어에 관한 연구이다. 먼저, 제어기 설계를 목적으로 하여 압축기, 응축기, 증발기 그리고 전자식 팽창밸브의 동특성이 수학적으로 모델링된다. 증발기에서의 일정한 크기의 과열도 발생을 제어목적으로 한정한 후 전자식 팽창밸브의 전류입력으로부터 증발기의 2상영역과 과열영역에서의 관벽의 온도로의 전달함수들이 유도된다. 비례적분 제어기의 폐루프시스템의 안정성과 제어성능은 Nyquist 안정성 판별법에 의해 분석된다. 시뮬레이션 결과가 제시된다.

  • PDF

Design of Antenna Tracking Software for MSC(Multi-Spectral Camera) Antenna Control

  • Kim, Young-Sun;Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Paik, Hong-Yul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.235-240
    • /
    • 2002
  • This paper shows the desist concept of an ATS(Antenna Tracking Software) to control the movement of the MSC(Multi-Spectral Camera) antenna. The MSC has a two-axes directional X-band antenna for image transmission to KGS(KOMSAT2 Ground Station). The main objective of the ATS is to drive the APM(Antenna Pointing Mechanism) to the required elevation and the azimuth position according to an appropriate TPF(Tracking Parameter File). The ATS is implemented as one task of the SBC(Single Board Computer) software, which uses VxWorks as a real time OS. The ATS has several operational modes such as STANDBY mode, First EL mode, First AZ mode, Normal Operation mode, and so on. The ATS uses two PI controllers fur the velocity and the position loop respectively, to satisfy the requirements specification. In order to show the feasibility of the described design concept, the various simulations and the experiments are performed under specific test configuration.

  • PDF

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF

실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구 (SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure)

  • 박승범;윤팔주;선우명호
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

공압식 능동형 엔진마운트시스템의 최적 제어매개변수 식별 (Identification of Optimal Control Parameters for a Pneumatic Active Engine Mount System)

  • 김일조;이재천;최재용;김정훈
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.30-37
    • /
    • 2012
  • Pneumatic Active Engine Mount(PAEM) with open-loop control system has been developed to reduce the transmission of the idle-shake vibration induced by engine effectively and economically. A solenoid valve installed between PAEM and vacuum tank is on-off switched by the Pulse Width Modulate(PWM) control signal to decrease the dynamic stiffness of the engine mount. This paper presents the methodology to identify the optimal values of control parameters of a PAEM, i.e, turn-on timing and duty ratio of PWM signal for 6 different idle driving conditions. A scanning algorithm was first applied to the vehicle test to obtain the approximate optimal control parameters minimizing the vibration at front seat rail and at steering wheel. Then the PAEM system identification was fulfilled to find accurate optimal control parameters by using multi-layer neural networks of Levenberg-Marquardt algorithm with vehicle test data.

지열원 물대공기 멀티 히트펌프의 일일 난방 운전 특성에 관한 실증 연구 (Daily Heating Performance of a Ground Source Multi-heat Pump at Heating Mode)

  • 최종민;임효재;강신형;문제명;김록희
    • 설비공학논문집
    • /
    • 제21권9호
    • /
    • pp.527-535
    • /
    • 2009
  • The aim of this study is to investigate the daily heating performance of ground source multi-heat pump system with vertical single U-tube type GLHXs, which were installed in a school building located in Cheonan. Daily average COP of heat pump unit on Jan. 12th, 2009 at heating mode was lower than it on Nov. 10th, 2008 and Dec. 15th, 2008, because of lower EWT of the outdoor heat exchanger and relatively smaller size of condenser and evaporator. But, the system COP on the former was higher than it on the latter because ground loop circulating pump was operated in rated speed. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load change have to be developed in order to enhance the performance of the system COP.

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.

OBSERVER-BASED INPUT-OUTPUT LINEARIZATION CONTROL OF A MULTIVARIABLE CONTINUOUS CHEMICAL REACTOR

  • Mohamed, Bouhamida;Bachir, Daaou;Abdellah, Mansouri;Mohammed, Chenafa
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.641-658
    • /
    • 2012
  • The goal of this paper is to develop a nonlinear observer-based control strategy for a multi-variables continuous stirred tank reactor (CSTR). A new robust nonlinear observer is constructed to estimate the whole process state variables. The observer is coupled with a nonlinear controller, designed based on the input-output linearization for controlling the concentration and reactor temperature. The closed loop system is shown to be globally asymptotically stable based on Lyapunov arguments. Finally, computer simulations are developed for showing the performance of the proposed controller.

구조적 파라미터 불확실성을 갖는 안정한 선형계에 대한 강인 포화 제어기 (Robust Saturation Controller for the Stable LTI System with Structured Real Parameter Uncertainties)

  • 임채욱;박영진;문석준;박윤식
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.517-523
    • /
    • 2006
  • This paper is focused on a robust saturation controller for the stable linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. Based on affine quadratic stability and multi-convexity concept, a robust saturation controller is newly proposed and the linear matrix inequality (LMI)-based sufficient existence conditions for this controller are presented. The controller suggested in this paper can analytically prescribe the lower and upper bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. Through numerical simulations, it is confirmed that the proposed robust saturation controller is robustly stable with respect to parameter uncertainties over the prescribed range defined by the lower and upper bounds.

Modeling and Regulator Design for Three-Input Power Systems with Decoupling Control

  • Li, Yan;Zheng, Trillion Q.;Zhao, Chuang;Chen, Jiayao
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.912-924
    • /
    • 2012
  • In hybrid renewable power systems, the use of a multiple-input dc/dc converter (MIC) leads to simpler circuit and lower cost, when compared to the conventional use of several single-input converters. This paper proposed a novel three-input buck/boost/buck-boost converter, which can be used in applications with various values of input voltage. The energy sources in this converter can deliver power to the load either simultaneously or individually in one switching period. The steady relationship, the power management strategy and the small-signal circuit model of this converter have been derived. With decoupling technology, modeling and regulator design can be obtained under multi-loop control modes. Finally, three generating methods of a multiple-input buck/boost/buck-boost converter is given, and this method can be extended to the other multiple-input dc/dc converters.