• 제목/요약/키워드: Multi-level Facial Feature

검색결과 3건 처리시간 0.016초

대규모 비디오 감시 환경에서 프라이버시 보호를 위한 다중 레벨 특징 기반 얼굴검출 방법에 관한 연구 (Face Detection Using Multi-level Features for Privacy Protection in Large-scale Surveillance Video)

  • 이승호;문정익;김형일;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1268-1280
    • /
    • 2015
  • In video surveillance system, the exposure of a person's face is a serious threat to personal privacy. To protect the personal privacy in large amount of videos, an automatic face detection method is required to locate and mask the person's face. However, in real-world surveillance videos, the effectiveness of existing face detection methods could deteriorate due to large variations in facial appearance (e.g., facial pose, illumination etc.) or degraded face (e.g., occluded face, low-resolution face etc.). This paper proposes a new face detection method based on multi-level facial features. In a video frame, different kinds of spatial features are independently extracted, and analyzed, which could complement each other in the aforementioned challenges. Temporal domain analysis is also exploited to consolidate the proposed method. Experimental results show that, compared to competing methods, the proposed method is able to achieve very high recall rates while maintaining acceptable precision rates.

3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구 (A study on the lip shape recognition algorithm using 3-D Model)

  • 김동수;남기환;한준희;배철수;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 추계종합학술대회
    • /
    • pp.181-185
    • /
    • 1998
  • 최근 통신 시스템의 연구와 발전 방향은 목소리의 음성 정보와 말하는 얼굴 영상의 화상 정보를 함께 적용하므로서 음성 정보만을 제공하는 경우보다 높은 인식율을 제공한다. 따라서 본 연구는 청각장애자들의 언어 대체수단 중 하나인 구화(speechreading)에서 가장 시각적 변별력이 높은 독순(lipreading)을 PC에서 구현하고자 한다. 간 논문은 기존의 방법과 달리 말하는 영상 시퀀스에서 독순(lipreading)을 행하기 위해 3차원 모델을 사용하여 입의 벌어진 정도, 턱의 움직임, 입술의 돌출과 같은 3차원 특징 정보를 제공하였다. 이와 같은 특징 정보를 얻기 위해 3차원 형상 모델을 입력 동영상에 정합시키고 정합된 3차원모델에서 각 특징점의 변화량을 인식파라미터로 사용하였다. 그리고, 인식 단위로 동영상을 분리하는 방법은 3차원 특징점 변화량에서 얻어지는 강도의 기울기에 의한다. 인식은 다차원(multi-dimensional), 다단계 라벨링 방법을 사용하여 3차원 특징벡터를 입력으로 한 이산 HMM을 사용하였다.

  • PDF

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.