Jin Jegal;Hyojun Park;Seonghee Kang;Jung-in Kim;Chang Heon Choi
Progress in Medical Physics
/
v.35
no.2
/
pp.45-51
/
2024
Purpose: Accurate operation of the multi-leaf collimator (MLC), a key technology in intensity modulated radiation therapy (IMRT), is essential for safe and optimal radiation treatment. The HalcyonTM linear accelerator has a collimator with low leakage and radiation transmission, making it suitable for IMRT. The limitations of the existing HalcyonTM MLC quality assurance (QA) method were supplemented with a mathematical method, and the results were analyzed. Methods: Electric portal imaging device (EPID) images obtained by performing the MLC QA plan on the HalcyonTM was analyzed using Python. The picket fence tests were performed and compared using the maximum pixel value and mathematical methods. Dose rate, gantry speed, and leaf speed variation plan were performed for dose transmission comparison. Results: For the maximum pixel value, the minimum distance between leaf junctions was 13.86 mm, and the maximum was 16.06 mm. However, for the mathematical method, the minimum and maximum were 14.54 mm and 15.68 mm, respectively. This suggests that setting the peak value to the highest value may cause an error in interpretation due to the limitations of the pixels of the EPID image. Performing QA on the remaining items confirmed that the measured values were within 3% of tolerance. Conclusions: The presented analysis method applied to the MLC QA can derive more reasonable and valid values than existing methods, which will help with MLC monitoring by reducing errors in excessive interpretation.
Kim, Myeong Soo;Choi, Chang Heon;An, Hyun Joon;Son, Jae Man;Park, So-Yeon
Progress in Medical Physics
/
v.29
no.2
/
pp.66-72
/
2018
The proper position of a multi-leaf collimator (MLC) is essential for the quality of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) dose delivery. Task Group (TG) 142 provides a quality assurance (QA) procedure for MLC position. Our study investigated the QA validation of the mechanical leaf gap measurement and the maintenance procedure. Two $VitalBeam^{TM}$ systems were evaluated to validate the acceptance of an MLC position. The dosimetric leaf gaps (DLGs) were measured for 6 MV, 6 MVFFF, 10 MV, and 15 MV photon beams. A solid water phantom was irradiated using $10{\times}10cm^2$ field size at source-to-surface distance (SSD) of 90 cm and depth of 10 cm. The portal dose image prediction (PDIP) calculation was implemented on a treatment planning system (TPS) called $Eclipse^{TM}$. A total of 20 VMAT plans were used to confirm the accuracy of dose distribution measured by an electronic portal imaging device (EPID) and those predicted by VMAT plans. The measured leaf gaps were 0.30 mm and 0.35 mm for VitalBeam 1 and 2, respectively. The DLG values decreased by an average of 6.9% and 5.9% after mechanical MLC adjustment. Although the passing rates increased slightly, by 1.5% (relative) and 1.2% (absolute) in arc 1, the average passing rates were still within the good dose delivery level (>95%). Our study shows the existence of a mechanical leaf gap error caused by a degenerated MLC motor. This can be recovered by reinitialization of MLC position on the machine control panel. Consequently, the QA procedure should be performed regularly to protect the MLC system.
In Republic of Korea, there are many Quality Assurance protocol for general radiation treatment machine such as linac. However, Quality Assurance protocol for radiosurgery treatment system is not ready perfectly. One of the radiation treatment machine for radiosurgery, novalis system needs to suitable Quality Assurance protocol for using it right way during radiation treatment and maintaining suitable accuracy for daily, weekly, monthly and annually periods. Therefore, in this article, we develop Quality Assurance protocol for novalis system. We collected and analysed domestic and foreign novalis Quality Assurance protocol. After that, we selected essential QA items and each tolerance range for developing proper QA protocol, and we made anatomical phantom for execution of selected QA items and evaluation of overall state of QA, and then, we use this measured value as a reference. Quality Assurance items are consisted of Mechanical accuracy QA part and Radiation delivery QA part. Mechanical accuracy QA part is comprised of radiation generation machine part, assistive devices part and multi-leaf collimator part. Radiation delivery QA part is divided into radiation isocenter accuracy and dosimetric evaluation. After that, developed novalis QA tables are made by using these QA items. These novalis QA tables would be used to good standard in order to maintain apt accuracy for radiosurgery in daily, weekly, monthly and annually periods.
Lee, Soon Sung;Choi, Sang Hyoun;Min, Chul Kee;Kim, Woo Chul;Ji, Young Hoon;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Kim, Kum Bae
Progress in Medical Physics
/
v.26
no.3
/
pp.168-177
/
2015
For evaluating the treatment planning accurately, the quality assurance for treatment planning is recommended when patients were treated with IMRT which is complex and delicate. To realize this purpose, treatment plan quality assurance software can be used to verify the delivered dose accurately before and after of treatment. The purpose of this study is to evaluate the accuracy of treatment plan quality assurance software for each IMRT plan according to MLC DLG (dosimetric leaf gap). Novalis Tx with a built-in HD120 MLC was used in this study to acquire the MLC dynalog file be imported in MobiusFx. To establish IMRT plan, Eclipse RTP system was used and target and organ structures (multi-target, mock prostate, mock head/neck, C-shape case) were contoured in I'mRT phantom. To verify the difference of dose distribution according to DLG, MLC dynalog files were imported to MobiusFx software and changed the DLG (0.5, 0.7, 1.0, 1.3, 1.6 mm) values in MobiusFx. For evaluation dose, dose distribution was evaluated by using 3D gamma index for the gamma criteria 3% and distance to agreement 3 mm, and the point dose was acquired by using the CC13 ionization chamber in isocenter of I'mRT phantom. In the result for point dose, the mock head/neck and multi-target had difference about 4% and 3% in DLG 0.5 and 0.7 mm respectively, and the other DLGs had difference less than 3%. The gamma index passing-rate of mock head/neck were below 81% for PTV and cord, and multi-target were below 30% for center and superior target in DLGs 0.5, 0.7 mm, however, inferior target of multi-target case and parotid of mock head/neck case had 100.0% passing rate in all DLGs. The point dose of mock prostate showed difference below 3.0% in all DLGs, however, the passing rate of PTV were below 95% in 0.5, 0.7 mm DLGs, and the other DLGs were above 98%. The rectum and bladder had 100.0% passing rate in all DLGs. As the difference of point dose in C-shape were 3~9% except for 1.3 mm DLG, the passing rate of PTV in 1.0 1.3 mm were 96.7, 93.0% respectively. However, passing rate of the other DLGs were below 86% and core was 100.0% passing rate in all DLGs. In this study, we verified that the accuracy of treatment planning QA system can be affected by DLG values. For precise quality assurance for treatment technique using the MLC motion like IMRT and VMAT, we should use appropriate DLG value in linear accelerator and RTP system.
The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck or the thorax region. It is not an easy task to maintain the spinal cord dose below tolerance and to keep the clinically acceptable dose to the PTV in this region. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. This technique is an extension of the conventional treatment planning. In the beginning the beam directions are selected as same as the conventional treatment planning to encompass the PTV, then the partial block are designed to shield the spinal cord. The plan comparisons between the conventional therapy plan and the PTB plan were performed to evaluate the validity of this technique. The mean dose and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan generated better results than the conventional treatment plan and it was proved to be useful for the H&N region.
Baek Geum Mun;Kim Dae Sup;Park Kwang Ho;Kim Chung Man
The Journal of Korean Society for Radiation Therapy
/
v.15
no.1
/
pp.41-52
/
2003
I. Purpose The dose distribution in normal tissues and target lesions is very important in the treatment planning. To make the uniform dose distribution in target lesions, many methods has been used. Especially in the head and neck, the dose inhomogeneity at the skin surface should be corrected. Conventional methods have a limitation in delivering the enough doses to the planning target volume (PTV) with minimized dose to the parotid gland and spinal cord. In this study, we investigated the feasibility and the practical QA methods of the forward IMRT. II. Material and Methods The treatment plan of the forward IMRT with the partial block technique using the dynamic multi-leaf collimator (dMLC) for the patients with the nasopharyngeal cancer was verified using the dose volume histogram (DVH). The films and pinpoint chamber were used for the accurate dose verification. III. Results As a result of verifying the DVH for the 2-D treatment plan with the forward IMRT, the dose to the both parotid gland and spinal cord were reduced. So the forward IMRT could save the normal tissues and optimize the treatment. Forward IMRT can use the 3-D treatment planning system and easily assure the quality, so it is easily accessible comparing with inverse IMRT IV. Conclusion The forward IMRT could make the uniform dose in the PTV while maintaining under the tolerance dose in the normal tissues comparing with the 2-D treatment.
Kang, Sang Sik;Noh, Sung Jin;Jung, Bong Jae;Noh, Ci Chul;Park, Ji Koon
Journal of the Korean Society of Radiology
/
v.10
no.8
/
pp.565-569
/
2016
Recently, a use of linear accelerator with a multi-leaf collimator(MLC) for radiation therapy is increasing. The importance of quality assurance (QA) for the linear accelerator is emphasized as the side effects of the inaccurate delivery of the radiation beam has been increased according to the high dose irradiation technique. In this study, The $HgI_2$ and $PbI_2$ photoconductor layer samples of $400{\mu}m$ thickness were fabricated using sedimentation method among particle-in-binder technology. From the fabricated samples, the electrical properties(dark current, output current, response properties and linearity) were investigated. From the experimental results, $HgI_2$ has good charge signal generation and linearity. Finally, from the signal response results about various thickness of $HgI_2$ sensor, the signal creation efficiency of $400{\mu}m$ thickness of $HgI_2$ sensor has the highest value and the excellent reproducibility below ${\pm}2.5%$.
Cho, Sam-Ju;Yi, Byong-Yong;Back, Geum-Mun;Lee, Sang wook;Ahn, Seung-Do;Kim, Jong-Hoon;Kwon, Soo-Il;Park, Eun-Kyung
Proceedings of the Korean Society of Medical Physics Conference
/
2002.09a
/
pp.138-140
/
2002
The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck (H&N) or the thorax region. Due to the fact that the cord is the elongated shaped structure, it is not an easy task to maintain the cord dose within the clinically acceptable dose range. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. Three dimension (3D) conformal beam directions, which minimize the coverage of the normal organs such as the lung and the parotid gland, were chosen. The PBT field shape for each field was designed to shield the spinal cord with the dMLC. The transmission factors were determined by the forward calculation method. The plan comparisons between the conventional 3D conformal therapy plan and the PTB plan were performed to evaluate the validity of this technique. The conformity index (CI) and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan always generated better results than the conventional 3D conformal plan. The PBT was proved to be useful for the H&N and thorax region.
Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.