• Title/Summary/Keyword: Multi-layer composite

Search Result 167, Processing Time 0.024 seconds

Effect of Silicon Nitride Whisker Content on the Flexural Strength of Silicon Nitride-Boron Nitride-Silicon Carbide Multi-Layer Composites

  • Park, Dong-Soo;Cho, Byung-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.832-836
    • /
    • 2003
  • Multi-layer ceramic composites were prepared by tape casting followed by hot pressing using silicon nitride layer with silicon nitride whiskers, silicon nitride layer with silicon carbide particles and boron nitride-alumina layer. The whiskers were aligned during the casting. As the whisker content of the silicon nitride layer was increased up to 10 wt%, the flexural strength of the multi-layer composite was increased. However, further increase of the whisker content in the layer resulted in a rapid decrease of the strength of the composite. The results suggest that the strength of multi-layer ceramic composite showing non-catastrophic failure behavior can be significantly improved by incorporating the aligned whiskers in the layers.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

A Study on Absorption Amount of Water-Repellency Processed Non-Woven Fabric in PVC Composite Waterproofing Sheet of A Multi-Layer Structure (다층막 구조형 PVC 복합방수시트 내 발수 처리된 부직포의 흡수량에 관한 연구)

  • An, Ki-Won;Heo, Neung-Hoe;Oh, Je-Gon;Go, Gun-Woong;Go, Jang-Ryeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.163-164
    • /
    • 2014
  • This study is conducted for prevent spread of penetration water and water leakage through non-woven fabric between PVC sheet and PVC sheet in the PVC composite waterproofing sheet of a multi-layer structure. For this, carry out absorption amount test to confirm spread resistance performance after manufacturing PVC composite waterproofing sheet of a multi-layer structure using water-repellency processed non-woven fabric. As a result of test, weight of water-repellency processed non-woven fabric increased to 1.178g, Compared with beginning and there are not penetration water.

  • PDF

Fracture Behavior of Silicon Nitride-silicon Carbide-boron Nitride Multi-layer Composites with Different Layer Thickness

  • Cho, Byoung-Uk;Park, Dong-Soo;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.622-627
    • /
    • 2002
  • Multi-layer composites consisting of silicon nitride, silicon nitride-silicon carbide and boron nitride-alumina layers were prepared fly stacking the corresponding ceramic tapes. The composites demonstrated self-diagnostic capability and non-catastrophic failure behavior. The composites consisting of many thin layers exhibited high strength and stepwise increase of the electrical resistance during the flexure test. The strength of the composite with too thick silicon nitride layers was low and the electrical resistance was abruptly increased to the detection limit of the digital multi-meter during the test. An extensive crack branching was observed in the weak (BN + Al$_2$O$_3$)layer.

Prediction of VOCs Emissions from Multi-layers Materials (복합자재에서의 VOCs 방출량 예측에 관한 연구)

  • Yoon, Chang-Hyun;Kwon, Kyung-Woo;Park, Jun-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.9-14
    • /
    • 2005
  • The purpose of this study is to predict VOCs emission rates from multi-layers materials, which are composed of single-layer materials having various VOCs emission rates, by using effective diffusion coefficients of the single-layer materials. The study was consisted of two parts; the one is the prediction of VOCs emission rates from multi-layer materials through numerical methods. The other is the measurement of VOCs emissions rates of wall composite and floor composite in Mock-up rooms for comparing the prediction and the experiments' values. The results of the study show that the short-term VOCs emission rates of multi-layers materials can be predicted from the effective diffusion coefficients of single materials in odor accuracy.

  • PDF

Vibration Control of Laminated Composite Beams using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동제어)

  • Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1333-1337
    • /
    • 2000
  • The flexural vibration of laminated composite beams with active and passive constrained-layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations with active control.

  • PDF

Modeling and Performance Evaluation of Multi-layer Composite Floor Plates with Holes (천공 다층 복합 바닥재의 모델링 및 성능평가)

  • Yoo, Hong Hee;Lee, Chang-Geun;Yoo, Hong-Geol;Joo, Young-Jun;Cho, Jung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.665-670
    • /
    • 2002
  • Pleasantness or quietness becomes one of the most important factors for residential designs recently. Especially for apartments, the noise generated by falling objects becomes a sensitive issue these days. To overcome the problem of the impact noise in apartments, the floor design has been changed. To reduce the transmissibility of the noise, composite floor structures are devised and implemented for the construction of apartments. In this paper, the noise reduction performance of a composite floor plate with holes is analyzed. Computational modelings for the structures are developed and its performance is evaluated by using the finite element method. The results show that the noise can be well reduced with the multi-layer composite floor plates with holes.

  • PDF

Effect of Al2O3-ZrO2 Composite Oxide Thickness on Electrical Properties of Etched Al Foil

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2016
  • To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, $Al_2O_3$, was partly replaced by an $Al_2O_3-ZrO_2$ (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al-Zr composite layer, and an outer $Al_2O_3$ layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with $ZrO_2$ coating were 36.3% and 27.5% higher than those of samples without $ZrO_2$ coating when anodized at 100 V and 600 V, respectively.

Vibration Control of Laminated Composite Beams Using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동 제어)

  • 강영규;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.261-266
    • /
    • 2001
  • The flexural vibration of laminated composite beams with active and passive constrained layer damping has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived fro flexural vibrations of symmetrical,. multi-layer laminated beams. The damping ratio and model damping of the first bending mode are calculated by means of iterative complex eigensolution method. The direct negative velocity feedback control is used for the active constrained layer damping. It is shown that the flexible laminated beam is more effective in the vibration control for both active and passive constrained layer damping. and this paper addresses a design strategy of laminated composite under flexural vibrations with constrained layer damping.

  • PDF

A Numerical Study on the Expectation Effect of Thermal Balance according to SOFC Hot BOP Insulation Application Method (SOFC Hot BOP 단열재 적용 방법에 따른 열평형 기대 효과에 대한 수치해석 연구)

  • CHOI, GYU-HONG;HWANG, SEUNG-SIK;KIM, DONG-GYUN;CHOI, CHONGGUN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.512-520
    • /
    • 2017
  • This paper is a numerical study of various methods of applying SOFC hot BOP insulation. The application methods are four cases from case 1 to case 4, and the performance difference between the result of applying powdered insulation and the result of zoning using composite multi-layer insulation was examined. Numerical results show that the thermal stability of composite multi-layer insulation is better than that of powder insulation when the thermal conductivity is 0.04 W/mK. In the future, we will increase the thermal conductivity of the composite multi-layer thermal insulation material and find the greatest value of thermal conductivity with a similar result to that of the powder insulation.