• Title/Summary/Keyword: Multi-layer Network

Search Result 813, Processing Time 0.029 seconds

Intra Prediction Using Multiple Models Based on Fully Connected Neural Network (다중 모델을 이용한 완전연결 신경망 기반 화면내 예측)

  • Moon, Gihwa;Park, Dohyeon;Kim, Minjae;Kwon, Hyoungjin;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.758-765
    • /
    • 2021
  • Recently, various research on the application of deep learning to video encoding for enhancing coding efficiency are being actively studied. This paper proposes a deep learning based intra prediction which uses multiple models by extending Matrix-based Intra Prediction(MIP) that is a neural network-based technology adopted in VVC. It also presents an efficient learning method for the multi-model intra prediction. To evaluate the performance of the proposed method, we integrated the VVC MIP and the proposed fully connected layer based multi-model intra prediction into HEVC reference software, HM16.19 as an additional intra prediction mode. As a result of the experiments, the proposed method can obtain bit-saving coding gain up to 0.47% and 0.19% BD-rate, respectively, compared to HM16.19 and VVC MIP.

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

QualNet based Linked Simulation Method for WAVE Physical Layer (QualNet 기반의 WAVE 물리계층 연동 시뮬레이션 방안)

  • Kwak, Jae-Min;Park, Kyung-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.351-357
    • /
    • 2009
  • In this paper, we studied an efficient inter-working method in which QualNet network simulator can import WAVE channel model and physical layer simulation module pre-designed by Matlab tool. At first, we investigated physical layer and communication medium simply designed in QualNet, then we suggested practical method for QualNet network simulator to adopt different type of physical layer simulation module in which detailed multi-path fading channel model and IEEE802.11p communication modem are designed. This work should be applied to linked simulation between upper layer and lower physical layer for total simulation from higher layer to lower physical layer related to next generation DSRC/WAVE specification.

  • PDF

Estimating chlorophyll-A concentration in the Caspian Sea from MODIS images using artificial neural networks

  • Boudaghpour, Siamak;Moghadam, Hajar Sadat Alizadeh;Hajbabaie, Mohammadreza;Toliati, Seyed Hamidreza
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.515-521
    • /
    • 2020
  • Nowadays, due to various pollution sources, it is essential for environmental scientists to monitor water quality. Phytoplanktons form the end of the food chain in water bodies and are one of the most important biological indicators in water pollution studies. Chlorophyll-A, a green pigment, is found in all phytoplankton. Chlorophyll-A concentration indicates phytoplankton biomass directly. Therefore, Chlorophyll-A is an indirect indicator of pollutants, including phosphorus and nitrogen, and their refinement and control are important. The present study, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images were used to estimate the chlorophyll-A concentration in southern coastal waters in the Caspian Sea. For this purpose, Multi-layer perceptron neural networks (NNs) were applied which contained three and four feed-forward layers. The best three-layer NN has 15 neurons in its hidden layer and the best four-layer one has 5 in each. The three- and four- layer networks both resulted in similar root mean square errors (RMSE), 0.1($\frac{{\mu}g}{l}$), however, the four-layer NNs proved superior in terms of R2 and also required less training data. Accordingly, a four-layer feed-forward NN with 5 neurons in each hidden layer, is the best network structure for estimating Chlorophyll-A concentration in the southern coastal waters of the Caspian Sea.

A Study on the Phoneme Segmentation Using Neural Network (신경망을 이용한 음소분할에 관한 연구)

  • 이광석;이광진;조신영;허강인;김명기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.472-481
    • /
    • 1992
  • In this paper, we proposed a method of segmenting speech signal by neural network and its validity is proved by computer simulation. The neural network Is composed of multi layer perceptrons with one hidden layer. The matching accuracies of the proposed algorithm are measured for continuous vowel and place names. The resulting average matching accuracy is 100% for speaker-dependent case, 99.5% for speaker-independent case and 94.5% for each place name when the neural network 1,; trained for 6 place names simultaneously.

  • PDF

Comparison of the BOD Forecasting Ability of the ARIMA model and the Artificial Neural Network Model (ARIMA 모형과 인공신경망모형의 BOD예측력 비교)

  • 정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.

The Study of Neural Networks Using Orthogonal Function System (직교함수를 사용한 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;손동설;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.214-217
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN's feasibility Neural Network). Identification results using a nonlinear. function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer.

  • PDF

Efficient Multi-scalable Network for Single Image Super Resolution

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2021
  • In computer vision, single-image super resolution has been an area of research for a significant period. Traditional techniques involve interpolation-based methods such as Nearest-neighbor, Bilinear, and Bicubic for image restoration. Although implementations of convolutional neural networks have provided outstanding results in recent years, efficiency and single model multi-scalability have been its challenges. Furthermore, previous works haven't placed enough emphasis on real-number scalability. Interpolation-based techniques, however, have no limit in terms of scalability as they are able to upscale images to any desired size. In this paper, we propose a convolutional neural network possessing the advantages of the interpolation-based techniques, which is also efficient, deeming it suitable in practical implementations. It consists of convolutional layers applied on the low-resolution space, post-up-sampling along the end hidden layers, and additional layers on high-resolution space. Up-sampling is applied on a multiple channeled feature map via bicubic interpolation using a single model. Experiments on architectural structure, layer reduction, and real-number scale training are executed with results proving efficient amongst multi-scale learning (including scale multi-path-learning) based models.

Misclassified Samples based Hierarchical Cascaded Classifier for Video Face Recognition

  • Fan, Zheyi;Weng, Shuqin;Zeng, Yajun;Jiang, Jiao;Pang, Fengqian;Liu, Zhiwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.785-804
    • /
    • 2017
  • Due to various factors such as postures, facial expressions and illuminations, face recognition by videos often suffer from poor recognition accuracy and generalization ability, since the within-class scatter might even be higher than the between-class one. Herein we address this problem by proposing a hierarchical cascaded classifier for video face recognition, which is a multi-layer algorithm and accounts for the misclassified samples plus their similar samples. Specifically, it can be decomposed into single classifier construction and multi-layer classifier design stages. In single classifier construction stage, classifier is created by clustering and the number of classes is computed by analyzing distance tree. In multi-layer classifier design stage, the next layer is created for the misclassified samples and similar ones, then cascaded to a hierarchical classifier. The experiments on the database collected by ourselves show that the recognition accuracy of the proposed classifier outperforms the compared recognition algorithms, such as neural network and sparse representation.

Precision indices of neural networks for medicines: structure-activity correlation relationships

  • Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo;Lee, Seung-Woo;Kim, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.481-481
    • /
    • 2000
  • We investigated the structure-activity relationships on use of multi-layer neural networks. The relationships are techniques required in developments of medicines. Since many kinds of observations might be adopted on the techniques, we discussed some points between the observations and the properties of multi-layer neural networks. In the structure-activity relationships, an important property is not that standard deviations are nearly equal to zero for observed physiological activity, but prediction ability for unknown medicines. Since we adopted non-linear approximation, the function to represent the activity can be defined by observations; therefore, we believe that the standard deviations have not significance. The function was examined by "leave-one-out" method, which was originally introduced for the multi-regression analysis. In the linear approximation, the examination is significance, however, we believe that the method is inappropriate in case of nonlinear fitting as neural networks; therefore, we derived a new index fer the relationships from the differential of information propagation in the neural network. By using the index, we discussed physiological activity of an anti-cancer medicine, Mitomycine derivatives. The neuro-computing suggests that there is no direction to extend the anti-cancer activity of Mitomycine, which is close to the trend of anticancer developing.

  • PDF