• Title/Summary/Keyword: Multi-labeled template

Search Result 3, Processing Time 0.016 seconds

Navigation Sign Recognition in Indoor enviroments Using Fuzzy Inference (퍼지추론을 이용한 실내환경에서의 주행신호인식)

  • 김전호;유범재;조영조;박민용;고범석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.141-144
    • /
    • 1997
  • This paper presents a method of navigation sign recognition in indoor environments using a fuzzy inference for an autonomous mobile robot. In order to adapt to image deformation of a navigation sign resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The DASM is proposed to detect correct feature points among incorrect feature points. Finally sugeno-style fuzzy inference are adopted for recognizing the navigation sign.

  • PDF

Landmark recognition in indoor environments using a neural network (신경회로망을 이용한 실내환경에서의 주행표식인식)

  • 김정호;유범재;오상록;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.306-309
    • /
    • 1996
  • This paper presents a method of landmark recognition in indoor environments using a neural-network for an autonomous mobile robot. In order to adapt to image deformation of a landmark resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The MLTM is. used for matching an image template with deformed real images and the DASM is proposed to detect correct feature points among incorrect feature points. Finally a feed-forward neural-network using back-propagation algorithm is adopted for recognizing the landmark.

  • PDF

Vehicle Detection and Tracking using Billboard Sweep Stereo Matching Algorithm (빌보드 스윕 스테레오 시차정합 알고리즘을 이용한 차량 검출 및 추적)

  • Park, Min Woo;Won, Kwang Hee;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.764-781
    • /
    • 2013
  • In this paper, we propose a highly precise vehicle detection method with low false alarm using billboard sweep stereo matching and multi-stage hypothesis generation. First, we capture stereo images from cameras established in front of the vehicle and obtain the disparity map in which the regions of ground plane or background are removed using billboard sweep stereo matching algorithm. And then, we perform the vehicle detection and tracking on the labeled disparity map. The vehicle detection and tracking consists of three steps. In the learning step, the SVM(support vector machine) classifier is obtained using the features extracted from the gabor filter. The second step is the vehicle detection which performs the sobel edge detection in the image of the left camera and extracts candidates of the vehicle using edge image and billboard sweep stereo disparity map. The final step is the vehicle tracking using template matching in the next frame. Removal process of the tracking regions improves the system performance in the candidate region of the vehicle on the succeeding frames.