• 제목/요약/키워드: Multi-joint robot manipulator

검색결과 22건 처리시간 0.06초

로봇 착유시스템을 위한 다관절 매니퓰레이터 개발 (Development of a Multi-joint Robot Manipulator for Robot Milking System)

  • 김웅;이대원
    • Journal of Biosystems Engineering
    • /
    • 제30권5호
    • /
    • pp.293-298
    • /
    • 2005
  • The purpose of this study was the development of a multi-joint robot manipulator for milking robot system. The multi-joint robot manipulator was controlled by 5 drivers with driver controller through the position information obtained from the image processing system. The robot manipulator to automatically attach each teat cup to the teats of a milking cow was developed and it's motion was accurately measured with error rate. Results were as follows. 1. Maximum errors in position accuracy were 4mm along X-axis, 4.5mm along Y-axis and 0.9mm along Z-axis. Absolute distance errors were maximum 4.8mm, minimum 2.7mm, and average 3.6mm. 2. Errors of repeatability were maximum 3.0mm along X-axis, 3.0mm along Y-axis, and 0.5mm along Z-axis. Distance error values were maximum 3.2mm, minimum 2.2mm, and average 2.5mm. It is envisaged that multi-joint robot manipulator can be applicate to milking robot system being developed in consideration of the experiment results.

자동 착유시스템을 위한 다관절 로봇 머니퓰레이터의 기구학적 분석 (Kinematics Analysis of the Milti-joint Robot Manipulator for an Automatic Milking System)

  • 김웅;이대원
    • 한국축산시설환경학회지
    • /
    • 제13권3호
    • /
    • pp.179-186
    • /
    • 2007
  • The purpose of this study was kinematics analysis of the multi-joint robot manipulator for an automatic milking system. The multi-joint robot manipulator was consisted of one perpendicular link and four revolution links to attach simultaneously four teat cups to four teats of a milking cow. The local coordinates of each joints on the robot manipulator was given for kinematics analysis. The transformation of manipulator was able to be given by kinematics using Denavit-Hatenberg parameters. The value of inverse kinematics which was solved by two geometric solution methods. The kinematics solutions was verified by AutoCAD, MATLAB, simulation program was developed using Visual C++.

  • PDF

슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어 (Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control)

  • 채승훈;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF

수직 다관절 사과수확로봇의 매니퓰레이터 개발 (I) -설계.제작- (Development of Manipulator for Vertically Moving Multi-Joint Apple Harvesting Robot(I) -Design.Manusacturing-)

  • 장익주
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.399-408
    • /
    • 2000
  • This study is final focused on developing fruit harvesting robot can distinguish fruit type and status accurately. Multi-joint robot is able to discriminate tree shape and select mature fruit by image processing. The multi-joint robot consists of (a) rotating base, (b)turning first joint-arm, (c)rotating and turning second joint-arm, (d)rotating and turning third joint-arm, (e)rotating and turning last joint and (f)picker hand. The operational ranges of the robot are: horizontal 860~2,220mm, vertical 1,440~2,260mm, 270 degrees’rotation angle, 90 or 270 degrees’turning angle. The robot weighs 330kg. The multi-joint robot was designed in high accuracy and efficiency by getting as close as the movements of human arms and waist.

  • PDF

로봇 매니퓰레이터의 독립관절 적응퍼지슬라이딩모드 제어 (Independent point Adaptive Fuzzy Sliding Mode Control of Robot Manipulator)

  • 김영태;이동욱
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.126-132
    • /
    • 2002
  • Robot manipulator has highly nonlinear dynamics. Therefore the control of multi-link robot arms is a challenging and difficult problem. In this paper an independent joint adaptive fuzzy sliding mode scheme is developed leer control of robot manipulators. The proposed scheme does not require an accurate manipulator dynamic model, yet it guarantees asymptotic trajectory tracking despite gross robot parameter variations. Numerical simulation for independent joint control of a 3-axis PUMA arm will also be included.

로보트 매니퓰레이터의 비집중 적응제어 (DECENTRALIZE)) ADAPTIVE CONTROL FOR ROBOT MANIPULATOR)

  • 이상철;정찬수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 1990
  • This paper presents a decentralized adaptive control scheme for multi-Joint robot manipulators based on the independent joint control scheme. The control object is to achieve accurate tracking of desired Joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simple by a feedback controller which ensure stable and also a position-velocity-acceleration feedforward controller and also auxiliary signal, with adjustable gains. Simulation results are given for a two-link manipulator under independent control, proposed decentralized adaptive control of manipulator is feasible. In spite of a pay load variation and strong static and dynamic couplings that exist between the joints.

  • PDF

Sugeno형태 퍼지 논리를 이용한 로봇 매니플레이터의 독립관절 적응제어 (Independent Joint Adaptive Control of Robot Manipulator Using the Sugeno-type of Fuzzy Logic)

  • 김영태
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.55-61
    • /
    • 2003
  • Control of multi-link robot arms is a challenging and difficult problem because of the highly nonlinear dynamics. Independent joint adaptive scheme is developed for control of robot manipulators based on Sugeno-type of fuzzy logic. Fuzzy logic system is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional forces. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for three-axis PUMA robot are included to show the effectiveness of controller.

적응제어기법에 의한 다관절 로보트 매니퓰레이터의 견실한 제어기 설계에 관한 연구 (A Study on Robust Controller Design of Multi-Joint Robot Manipulator Using Adaptive Control)

  • 한성현;이만형
    • 한국정밀공학회지
    • /
    • 제6권4호
    • /
    • pp.108-118
    • /
    • 1989
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonliearity and parameter uncertainty in robot dynamics model. In this paper, an adaptive control scheme for a robot manipulator is proposed to design robust controller using model reference adaptive control technique and hyperstability theory but it does away with] assumption that the process is characterized by a linear model remaining time invariant during the adaptation process. The performance of controller is demonstrated by the simulation about position and speed control of a six-link manipulator with disturbance and payload variation.

  • PDF

PD-슬라이딩 모드를 이용한 다 관절 매니퓰레이터 제어 (Control of Multi-Joint Manipulator Using PD-Sliding Mode)

  • 손현석;이원기;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1286-1293
    • /
    • 2008
  • This paper proposes a realization of robust trajectory tracking for an industrial robot by using PD-sliding mode hybrid control. The PD control has a good performance in the transient period while the sliding mode control has robustness against the system uncertainties. The proposed control method is proposed for the control of a multi-joint robot by taking advantages of both the PD and sliding mode controls. The embodiment of distributed controllers that drive 4-DOF axes has evaluated through experiments with the multi-joint robot AT1. The PD-sliding mode algorithm which is proposed in this paper shows a good performance in the transient period and robustness against disturbances and This paper shows accuracy of end-effector.

Robust control of a robot manipulator by means of sliding observers

  • Iwai, Z.;Mano, K.;Ohiomo, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1075-1079
    • /
    • 1989
  • In this paper a robust control design is developed for the control of a multi-joint manipulators using sliding observer. The sliding observer is introduced to estimate the angular velocity of the links under the disturbance input. The feedback control is designed by the use of the estimated value of the angular velocity .theta.. The VSS control laws is introduced to ensure the robustness concerning the disturbance inputs. To illustrate the effectiveness of the proposed method, a computer simulation is performed for a two-joint manipulator.

  • PDF