• Title/Summary/Keyword: Multi-images

Search Result 1,987, Processing Time 0.028 seconds

Wavelet Transform based Image Registration using MCDT Method for Multi-Image

  • Lee, Choel;Lee, Jungsuk;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • This paper is proposed a wavelet-based MCDT(Mask Coefficient Differential and Threshold) method of image registration of Multi-images contaminated with visible image and infrared image. The method for ensure reliability of the image registration is to the increase statistical corelation as getting the common feature points between two images. The method of threshold the wavelet coefficients using derivatives of the wavelet coefficients of the detail subbands was proposed to effectively registration images with distortion. And it can define that the edge map. Particularly, in order to increase statistical corelation the method of the normalized mutual information. as similarity measure common feature between two images was selected. The proposed method is totally verified by comparing with the several other multi-image and the proposed image registration.

Multi-cue Integration for Automatic Annotation (자동 주석을 위한 멀티 큐 통합)

  • Shin, Seong-Yoon;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.151-152
    • /
    • 2010
  • WWW images locate in structural, networking documents, so the importance of a word can be indicated by its location, frequency. There are two patterns for multi-cues ingegration annotation. The multi-cues integration algorithm shows initial promise as an indicator of semantic keyphrases of the web images. The latent semantic automatic keyphrase extraction that causes the improvement with the usage of multi-cues is expected to be preferable.

  • PDF

A Case Study of Land-cover Classification Based on Multi-resolution Data Fusion of MODIS and Landsat Satellite Images (MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구)

  • Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1035-1046
    • /
    • 2022
  • This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

A Study on an Automatic Multi-Focus System for Cell Observation

  • Park, Jaeyoung;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • This study is concerned with the mechanism and structure of an optical microscope and an automatic multi-focus algorithm for automatically selecting sharp images from multiple foci of a cell. To obtain precise cell images quickly, a z-axis actuator with a resolution of $0.1{\mu}m$ was designed to control an optical microscope Moreover, a lighting control system was constructed to select the color and brightness of light that best suit the object being viewed. Cell images are captured by the instrument and the sharpness of each image is determined using Gaussian and Laplacian filters. Next, cubic spline interpolation and peak detection algorithms are applied to automatically find the most vivid points among multiple images of a single object. A cancer cell imaging experiment using propidium iodide staining confirmed that a sharp multipoint image can be obtained using this microscope. The proposed system is expected to save time and effort required to extract suitable cell images and increase the convenience of cell analysis.

Enhancing Single Thermal Image Depth Estimation via Multi-Channel Remapping for Thermal Images (열화상 이미지 다중 채널 재매핑을 통한 단일 열화상 이미지 깊이 추정 향상)

  • Kim, Jeongyun;Jeon, Myung-Hwan;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.314-321
    • /
    • 2022
  • Depth information used in SLAM and visual odometry is essential in robotics. Depth information often obtained from sensors or learned by networks. While learning-based methods have gained popularity, they are mostly limited to RGB images. However, the limitation of RGB images occurs in visually derailed environments. Thermal cameras are in the spotlight as a way to solve these problems. Unlike RGB images, thermal images reliably perceive the environment regardless of the illumination variance but show lacking contrast and texture. This low contrast in the thermal image prohibits an algorithm from effectively learning the underlying scene details. To tackle these challenges, we propose multi-channel remapping for contrast. Our method allows a learning-based depth prediction model to have an accurate depth prediction even in low light conditions. We validate the feasibility and show that our multi-channel remapping method outperforms the existing methods both visually and quantitatively over our dataset.

COLOR CORRECTION METHOD USING GRAY GRADIENT BAR FOR MULTI-VIEW CAMERA SYSTEM

  • Jung, Jae-Il;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.1-6
    • /
    • 2009
  • Due to the different camera properties of the multi-view camera system, the color properties of captured images can be inconsistent. This inconsistency makes post-processing such as depth estimation, view synthesis and compression difficult. In this paper, the method to correct the different color properties of multi-view images is proposed. We utilize a gray gradient bar on a display device to extract the color sensitivity property of the camera and calculate a look-up table based on the sensitivity property. The colors in the target image are converted by mapping technique referring to the look-up table. Proposed algorithm shows the good subjective results and reduces the mean absolute error among the color values of multi-view images by 72% on average in experimental results.

  • PDF

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

Restoring Turbulent Images Based on an Adaptive Feature-fusion Multi-input-Multi-output Dense U-shaped Network

  • Haiqiang Qian;Leihong Zhang;Dawei Zhang;Kaimin Wang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.215-224
    • /
    • 2024
  • In medium- and long-range optical imaging systems, atmospheric turbulence causes blurring and distortion of images, resulting in loss of image information. An image-restoration method based on an adaptive feature-fusion multi-input-multi-output (MIMO) dense U-shaped network (Unet) is proposed, to restore a single image degraded by atmospheric turbulence. The network's model is based on the MIMO-Unet framework and incorporates patch-embedding shallow-convolution modules. These modules help in extracting shallow features of images and facilitate the processing of the multi-input dense encoding modules that follow. The combination of these modules improves the model's ability to analyze and extract features effectively. An asymmetric feature-fusion module is utilized to combine encoded features at varying scales, facilitating the feature reconstruction of the subsequent multi-output decoding modules for restoration of turbulence-degraded images. Based on experimental results, the adaptive feature-fusion MIMO dense U-shaped network outperforms traditional restoration methods, CMFNet network models, and standard MIMO-Unet network models, in terms of image-quality restoration. It effectively minimizes geometric deformation and blurring of images.

Multi-Range Approach of Stereo Vision for Mobile Robot Navigation in Uncertain Environments

  • Park, Kwang-Ho;Kim, Hyung-O;Baek, Moon-Yeol;Kee, Chang-Doo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1411-1422
    • /
    • 2003
  • The detection of free spaces between obstacles in a scene is a prerequisite for navigation of a mobile robot. Especially for stereo vision-based navigation, the problem of correspondence between two images is well known to be of crucial importance. This paper describes multi-range approach of area-based stereo matching for grid mapping and visual navigation in uncertain environment. Camera calibration parameters are optimized by evolutionary algorithm for successful stereo matching. To obtain reliable disparity information from both images, stereo images are to be decomposed into three pairs of images with different resolution based on measurement of disparities. The advantage of multi-range approach is that we can get more reliable disparity in each defined range because disparities from high resolution image are used for farther object a while disparities from low resolution images are used for close objects. The reliable disparity map is combined through post-processing for rejecting incorrect disparity information from each disparity map. The real distance from a disparity image is converted into an occupancy grid representation of a mobile robot. We have investigated the possibility of multi-range approach for the detection of obstacles and visual mapping through various experiments.

An automatic detection method for lung nodules based on multi-scale enhancement filters and 3D shape features

  • Hao, Rui;Qiang, Yan;Liao, Xiaolei;Yan, Xiaofei;Ji, Guohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.347-370
    • /
    • 2019
  • In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.