• 제목/요약/키워드: Multi-ignition

검색결과 88건 처리시간 0.019초

A Study on the Rapid Bulk Combustion of Premixture Using the Radical Seeding

  • Lee, Myung-Jun;Kim, Jong-Youl;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1623-1629
    • /
    • 2004
  • The objective of this study is the rapid bulk combustion of mixture in a constant volume chamber with a tiny sub-chamber. Some narrow passage holes were arranged to induce simultaneous multi-point ignition in the main chamber by jet of burned and unburned gases including radicals from the sub-chamber, and the equivalence ratios of pre-mixture in the main chamber and the sub-chamber were the same. The principal factors of the Radical Induced Auto-Ignition (RIAI) method are the diameter of the passage holes and the volume of sub-chamber. The relationship between the sub-chamber and diameter of passage hole was represented by the ratios of sub-chamber volume to passage hole volume. The ratios are non-dimensional coefficients for sub-chamber characteristics. As a result, the RIAI method reduced the combustion period, which expanded the lean limit in comparison with SI method.

고압에서의 분무의 증발 및 연소 현상에 관한 연구 (Study on Vaporization and Combustion of Spray in High Pressure Environment)

  • 왕태중;백승욱
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

플라즈마 제트 플러그의 형상이 정적연소기내 연소특성에 미치는 영향 (Effect of the Configuration of Plasma Jet Plug on Combustion Characteristics in a Constant Volume Vessel)

  • 김문헌;유호선;오병진;박정서
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.593-602
    • /
    • 1999
  • This paper presents combustion characteristics of LPG-air mixture ignited by the plasma jet in a cylindrical vessel with constant volume, in which our focus is placed on the multi-hole plug configuration. Four types of the plug configuration depending on the number of orifice and the arranged angle are considered, along with two cases of conventional spark ignition for comparison. Not only the flame propagation is photographed at intervals, but the pressure in the combustion chamber is also recorded through the entire combustion process. The results show that the plasma jet ignition enhances the overall combustion rate remarkably in comparison to the spark ignition by generating irregular flame front and penetrating through the unburned mixture. The combustion enhancement rate agrees favorably with the available data, which supports the validity of our experiment. Synthetically estimating, the two-hole sixty-degree plug appears to be the most desirable, in that the maximum pressure as well as the combustion duration is less affected by the sub-energy level than the others. It is also deduced that there may exist an optimal plug configuration capable of rapid combustion for a specific combustion chamber.

DME와 Diesel의 HCCI 연소특성 비교 (DME and Diesel HCCI Combustion Characteristics)

  • 이주광;국상훈;박철웅;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.231-236
    • /
    • 2003
  • HCCI(Homogeneous Charge Compression Ignition) combustion is an advanced combustion process explained as a homogeneously premixed charge of a fuel where air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Particulate matters (PM) could be also reduced by the homogeneous combustion and no fuel-rich zones. Injection timing is extremely advanced to achieve homogeneous charge where a diesel fuel could not be vaporized sufficiently due to low pressure and low temperature condition. Also the over-penetration could be a severe problem. The small injection angle and multi-hole injectors were applied to solve these problems. Dimethyl ether (DME) as an altenative fuel was also applied to relive the bad vaporization problem associated with early injection of diesel fuel. Neat DME has a very high cetane rating and high vapor pressure. Contained oxygen reduces soot during the combustion. Experimental result shows DME can be easily operated in an HCCI engine. PM shows almost zero value and NOx is reduced more than 90% compared to direct-injection diesel engine operating mode but problem of early ignition needs more investigation.

  • PDF

Multi-zone 모델에 의한 디젤엔진에서의 분사율 변화에 따른 배기가스 특성에 관한 연구 (A Study on the Effect of Injection Rate on Emission Characteristics in D.I. Diesel Engine by Multi-zone Model)

  • 황재원;갈한주;박재근;김만호;;채재우
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.94-103
    • /
    • 1999
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed . This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. It takes into consideration, on a zonal basis ,detailed of fuel spray formation, droplet evaporation, air-fuel mixing, spray wall interaction, swirl , heat transfer, self ignition and burning rate . The emission model is considered with chemical equipment , as well as the kinetics of fuel. NO and soot reactions in order to calculate the pollutant concentrations within each zone and the whole of cylinder . The accuracy of prediction versus experimental data and the capability of the model in predicting engine heat release, cylinder pressure and all the major exhaust emissions on zonal and cumulative basis., is demonstrated. Detailed prediction results showing the sensitivity of the model bv various injection rates are presented and discussed.

  • PDF

다기통 전기점화기관의 균질혼합기 공급에 관한 연구 - 연소특성에 미치는 영향 - (A Study on Homogeneous Mixture Supply in a Multi-Cylinder Spark Ignition Engine - Effect on Combustion Characteristics -)

  • 김물시;이용길;박경석
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2194-2200
    • /
    • 1994
  • In an automotive spark ignition engine, it is important to form the proper mixture (air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel si attached on the inside wall of the intake manifold for unadequate nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in the intake manifold on combustion characteristics and engine performance.

다수의 CCFL 구동과 휘도 향상에 관한 연구 (A Study on the Multiple CCFL Operation and Brightness Improvement)

  • 박정오;김철진;박현철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.126-128
    • /
    • 2008
  • This paper presents an architecture for driving multiple paralleled cold cathode fluorescent lamps (CCFLs) for back lighting applications. Multi CCFL operation and increase of brightness, the key to the architecture is a proposed capacitive coupling approach for lamp ignition. This system is consist of a flyback converter, a single inverter to drive multiple lamps and conductive floating reflector. The topology is capable of driving a number of parallel lamps with independent accurate lamp, The capacitive coupling the leakage inductance and stray capacitance creation which it used, current regulation and improving cost effectiveness with significant reduction in size and weight, compared to typical high frequency ac ballast. Experimental demonstration results for ten of parallel CCFLs with simultaneous ignition.

  • PDF

원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part II: 환기부족화재 조건) (Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part II: Under-ventilated Fire Condition))

  • 문선여;황철홍;박종석;도규식
    • 한국화재소방학회논문지
    • /
    • 제27권2호
    • /
    • pp.80-88
    • /
    • 2013
  • 원자력발전소의 밀폐된 다중 구획에서 환기부족화재에 대한 FDS 검증이 수행되었다. 수치결과는 OECD/NEA PRISME 프로젝트를 통해 얻어진 실험결과와 비교되었다. 환기시스템의 수치 경계조건 및 FDS에 적용된 소화모델이 구획 내부의 열적 및 화학적특성에 미치는 영향이 상세히 논의되었다. 점화 및 소화 단계에서 구획 내부의 급격한 압력변동에 의해 변화될 수 있는 환기 유량의 수치 경계조건은 다중 구획 내부의 온도, 열유속에는 큰 영향을 주지 않지만, 농도의 정확한 예측을 위하여 주위 깊게 고려되어야 한다. FDS에 적용된 소화모델의 기본값은 인위적인 소화 및 재점화 현상을 동반하며, 해당 연료에 대한 수정된 소화모델의 정보가 적용되었을 때 환기부족화재에 대한 FDS의 결과는 실험결과를 매우 잘 예측하고 있음을 확인하였다.

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

자동차 인테리어의 사용성 분석에 관한 사례연구I ­운전석을 중심으로­ (A case study on usability analysis a car interior I)

  • 양수선;김병길;김철수;박영목;박종서
    • 한국디자인학회:학술대회논문집
    • /
    • 한국디자인학회 2000년도 추계 학술발표대회 논문집
    • /
    • pp.8-9
    • /
    • 2000
  • 기존의 자동차 인테리어 디자인은 인간공학적이나 스타일링을 위주로 하는 경우가 많았다. 그러나 본 연구는 운전자의 '사용성' 이라는 측면에서 운전부를 중심으로 운행에 관계된 이그니션콘트롤(ignition control), 멀티펑션스위치(multi function switch)와 차량의 상태를 알려주는 클러스터게이지(cluster gauge)를 중심으로 조사해 보았다. (중략)

  • PDF