• Title/Summary/Keyword: Multi-head attention LSTM

Search Result 5, Processing Time 0.019 seconds

Sentiment Analysis of News Based on Generative AI and Real Estate Price Prediction: Application of LSTM and VAR Models (생성 AI기반 뉴스 감성 분석과 부동산 가격 예측: LSTM과 VAR모델의 적용)

  • Sua Kim;Mi Ju Kwon;Hyon Hee Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.209-216
    • /
    • 2024
  • Real estate market prices are determined by various factors, including macroeconomic variables, as well as the influence of a variety of unstructured text data such as news articles and social media. News articles are a crucial factor in predicting real estate transaction prices as they reflect the economic sentiment of the public. This study utilizes sentiment analysis on news articles to generate a News Sentiment Index score, which is then seamlessly integrated into a real estate price prediction model. To calculate the sentiment index, the content of the articles is first summarized. Then, using AI, the summaries are categorized into positive, negative, and neutral sentiments, and a total score is calculated. This score is then applied to the real estate price prediction model. The models used for real estate price prediction include the Multi-head attention LSTM model and the Vector Auto Regression model. The LSTM prediction model, without applying the News Sentiment Index (NSI), showed Root Mean Square Error (RMSE) values of 0.60, 0.872, and 1.117 for the 1-month, 2-month, and 3-month forecasts, respectively. With the NSI applied, the RMSE values were reduced to 0.40, 0.724, and 1.03 for the same forecast periods. Similarly, the VAR prediction model without the NSI showed RMSE values of 1.6484, 0.6254, and 0.9220 for the 1-month, 2-month, and 3-month forecasts, respectively, while applying the NSI led to RMSE values of 1.1315, 0.3413, and 1.6227 for these periods. These results demonstrate the effectiveness of the proposed model in predicting apartment transaction price index and its ability to forecast real estate market price fluctuations that reflect socio-economic trends.

A study on data augmentation methods for sound data classification (소리 데이터 분류에 대한 데이터 증대 방법 연구)

  • Chang, Il-Sik;Park, Goo-man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1308-1310
    • /
    • 2022
  • 소리 데이터 분류는 단순 소리를 통한 분류, 감정 인식등 다양한 연구가 진행중이다. 심층 신경망에서 데이터의 부족과 과적합 문제를 개선하는 방법으로 데이터 증강은 중요하다. 본 논문에서는 3가지의 소리데이터(UrbanSound8K, RAVDESS, IRMAS)를 사용하였으며, 소리데이터는 멜 스펙트로그램을 통한 변환과정을 거쳐 네트워크 망에 입력된다. 입력된 신호는 다양한 네크워크 신경망(Bidirection LSTM, Bidirection LSTM Attention, Multi-Head Attention, CNN)을 통해 학습되어지며, 각각의 네트워크 신경망에서 데이터 증강 전후의 분류 정확도를 확인 하였다. 다양한 데이터셋과 다양한 네트워크 망에서의 데이터 증강 방법의 결과 비교를 통한 통찰을 얻을수 있을 것이다.

  • PDF

A Study on the Classification of Fault Motors using Sound Data (소리 데이터를 이용한 불량 모터 분류에 관한 연구)

  • Il-Sik, Chang;Gooman, Park
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.885-896
    • /
    • 2022
  • Motor failure in manufacturing plays an important role in future A/S and reliability. Motor failure is detected by measuring sound, current, and vibration. For the data used in this paper, the sound of the car's side mirror motor gear box was used. Motor sound consists of three classes. Sound data is input to the network model through a conversion process through MelSpectrogram. In this paper, various methods were applied, such as data augmentation to improve the performance of classifying fault motors and various methods according to class imbalance were applied resampling, reweighting adjustment, change of loss function and representation learning and classification into two stages. In addition, the curriculum learning method and self-space learning method were compared through a total of five network models such as Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, and Convolution Neural Network, and the optimal configuration was found for motor sound classification.

Multimodal Sentiment Analysis Using Review Data and Product Information (리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석)

  • Hwang, Hohyun;Lee, Kyeongchan;Yu, Jinyi;Lee, Younghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.15-28
    • /
    • 2022
  • Due to recent expansion of online market such as clothing, utilizing customer review has become a major marketing measure. User review has been used as a tool of analyzing sentiment of customers. Sentiment analysis can be largely classified with machine learning-based and lexicon-based method. Machine learning-based method is a learning classification model referring review and labels. As research of sentiment analysis has been developed, multi-modal models learned by images and video data in reviews has been studied. Characteristics of words in reviews are differentiated depending on products' and customers' categories. In this paper, sentiment is analyzed via considering review data and metadata of products and users. Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Self Attention-based Multi-head Attention models and Bidirectional Encoder Representation from Transformer (BERT) are used in this study. Same Multi-Layer Perceptron (MLP) model is used upon every products information. This paper suggests a multi-modal sentiment analysis model that simultaneously considers user reviews and product meta-information.

Optimizing ELECTRA-based model for Zero Anaphora Resolution (생략복원을 위한 ELECTRA 기반 모델 최적화 연구)

  • Park, Jinsol;Choi, Maengsik;Matteson, Andrew;Lee, Chunghee
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.329-334
    • /
    • 2021
  • 한국어에서는 문장 내의 주어나 목적어가 자주 생략된다. 자연어 처리에서 이러한 문장을 그대로 사용하는 것은 정보 부족으로 인한 문제 난이도 상승으로 귀결된다. 생략복원은 텍스트에서 생략된 부분을 이전 문구에서 찾아서 복원해 주는 기술이며, 본 논문은 생략된 주어를 복원하는 방법에 대한 연구이다. 본 논문에서는 기존에 생략복원에 사용되지 않았던 다양한 입력 형태를 시도한다. 또한, 출력 레이어로는 finetuning layer(Linear, Bi-LSTM, MultiHeadAttention)와 생략복원 태스크 형태(BIO tagging, span prediction)의 다양한 조합을 실험한다. 국립국어원 무형 대용어 복원 말뭉치를 기반으로 생략복원이 불필요한 네거티브 샘플을 추가하여 ELECTRA 기반의 딥러닝 생략복원 모델을 학습시키고, 생략복원에 최적화된 조합을 검토한다.

  • PDF