• Title/Summary/Keyword: Multi-function technique

Search Result 322, Processing Time 0.029 seconds

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

On the Minimization of the Multi-output Switching Function by Using the Intersection Table

  • Hwang, Hee-Yeung;Cho, Dong-Sub;Kim, Ho-Kyum
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.26-28
    • /
    • 1979
  • The optimal selection of Prime Implications for the multi-output switching function is difficult task, as the input variables increase. This paper is concerned with the technique for the minimization of the multi-output switching function using the intersection table. This procedure is applicable to both manual and computer-programmed realization without complexity.

  • PDF

New Multi-Stage Blind Clustering Equalizers for QAM Demodulation (QAM 복조용 새로운 다단계 자력복구 군집형 채널등화기)

  • Hwang, Yu-Mo;Lee, Jung-Hyeon;Song, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.269-277
    • /
    • 2000
  • We propose two new types multi-stage blind clustering equalizers for QAM demoulation, which are called a complex classification algorithm(CCA) and a radial basis function algorithm(RBFA). The CCA uses a clustering technique based on the joint gaussian probability function and computes separately the real part and imaginary part for simple implementation as well as less computation. In order to improve the performance of CCA, the Dual-Mode CCA(DMCCA) incorporates the CCA tap-updating mode with the decision-directed(DD) mode. The RBFA reduces the number of cluster centers through three steps using the classification technique of RBF and then updates the equalizer taps for QAM demodulation. Test results on 16-QAM confirm that the proposed algorithms perform better the conventional multi-state equalizers in the senses of SER and MSE under multi-path fading channel.

  • PDF

The Generator Maintenance Scheduling using Fuzzy Multi-criteria (퍼지다목적함수를 이용한 발전기보수유지계획의 수립)

  • 최재석;도대호;이태인
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.131-138
    • /
    • 1995
  • A new technique using integer programming based on fuzzy multi-criteria function is proposed for generator maintenance scheduling. Minimization maintenance delay cost and maximization reserve power are considered for fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment, fuzzy multi-criteria integer programming is used. In the maintenance scheduling, a characteristic feature of the presented approach is that the crisp constraints with uncertainty can be taken into account by using fuzzy set theory and so more flexible solution can be obtained. The effectiveness of the proposed approach is demonstrated by the simulation results.

  • PDF

Implementation of Security Policies of ONSU-MF(One Network Security Unit-Multi Function) and OSD-MD(One Security Device-Multi Defense) (ONSU-MF(One Network Security Unit-Multi Function)기법과 OSD-MD(One Security Device-Multi Defense)기법 기반의 보안정책 구현)

  • Seo, Woo-Seok;Lee, Gyn-An;Jun, Moon-Seog
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.317-326
    • /
    • 2011
  • This study is meaningful in that it standardizes various security and defense policies and devices, newly defines characteristics of defense policies and defense techniques, and specify and report various kinds of security polities and devices in order for administrators or users to add and apply the policies when introducing new security policies including the implementation of existing network infra and applying additionally. Therefore, this study aims to divide the policies into ONSU-MF(One Network Security Unit-Multi Function) that classifies one network security device-based policies and OSD-MD(One Security Device-Multi Defense), which implements various security methods by using one security device, and suggest network security infra improvement mechanism through the standardization implementation technique integrating the two methods.

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

Flexible Maintenance Scheduling of Generation System by Multi-Probabilistic Reliability Criterion in Korea Power System

  • Park, Jeong-Je;Choi, Jae-Seok;Baek, Ung-Ki;Cha, Jun-Min;Lee, Kwang-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • A new technique using a search method which is based on fuzzy multi-criteria function is proposed for GMS(generator maintenance scheduling) in order to consider multi-objective function. Not only minimization of probabilistic production cost but also maximization of system reliability level are considered for fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment, fuzzy multi-criteria relaxation method(fuzzy search method) is used. The practicality and effectiveness of the proposed approach are demonstrated by simulation studies for a real size power system model in Korea in 2010.

Development of Experimental Gain Tuning Technique for Multi-Axis Servo System (다축 서보 시스템의 Gain Tuning에 관한 연구)

  • Chung W.J.;Kim H.G.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.271-272
    • /
    • 2006
  • This paper presented a new experimental gain tuning technique for a Multi-Axis Servo System. First, the investigation for proportional gain of velocity control loop by using a Dynamic Signal Analyzer (DSA) was performed. Using the FUNCTION characteristic of DSA based on the Bode plot, the Bode plot of open loop transfer function was obtained. In turn, the integral gain of a servo controller can be found out by using the Integration time constant extracted from the Bode plot of open loop transfer function. In the meanwhile, the positional gain of the servo controller has been obtained by using the Bode plot of the closed loop transfer function. We have also proposed the technique to find out an optimal parameter of a notch filter, which has a great influence on vibration reduction, by using the damping factor extracted from the Bode plot of closed loop transfer function.

  • PDF

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.