• Title/Summary/Keyword: Multi-function Sensor

Search Result 141, Processing Time 0.026 seconds

Optimal 3D Grasp Planning for unknown objects (임의 물체에 대한 최적 3차원 Grasp Planning)

  • 이현기;최상균;이상릉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.462-465
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has analyzed mainly with either unknown objects 2D by vision sensor or unknown objects, cylindrical or hexahedral objects, 3D. Extending the previous work, in this paper we propose an algorithm to analyze grasp of unknown objects 3D by vision sensor. This is archived by two steps. The first step is to make a 3D geometrical model of unknown objects by stereo matching which is a kind of 3D computer vision technique. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand because it has the characteristic of multi-finger hand and is easy to modeling. To find the optimal grasping points, genetic algorithm is used and objective function minimizing admissible farce of finger tip applied to the object is formulated. The algorithm is verified by computer simulation by which an optimal grasping points of known objects with different angles are checked.

  • PDF

The Optimal Grasp Planning by Using a 3-D Computer Vision Technique (3차원 영상처리 기술을 이용한 Grasp planning의 최적화)

  • 이현기;김성환;최상균;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.54-64
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has mainly analyzed with either unknown objects 2-dimensionally by vision sensor or known objects, such as cylindrical objects, 3-dimensionally. As extending the previous work, in this study we propose an algorithm to analyze grasp of unknown objects 3-dimensionally by using vision sensor. This is archived by two steps. The first step is to make a 3-dimensional geometrical model for unknown objects by using stereo matching. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand which has the characteristic of multi-finger hand and is easy to model. To find the optimal grasping points, genetic algorithm is employed and objective function minimizes the admissible force of finger tip applied to the objects. The algorithm is verified by computer simulation by which optimal grasping points of known objects with different angle are checked.

Multisensor-Based Navigation of a Mobile Robot Using a Fuzzy Inference in Dynamic Environments (동적환경에서 퍼지추론을 이용한 이동로봇의 다중센서기반의 자율주행)

  • 진태석;이장명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.79-90
    • /
    • 2003
  • In this paper, we propose a multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using multi-ultrasonic sensor. Instead of using “sensor fusion” method which generates the trajectory of a robot based upon the environment model and sensory data, “command fusion” method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as experiments with IRL-2002. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

OVERVIEW OF KOREA OCEAN SATELLITE CENTER (KOSC) DEVELOPMENT

  • Yang, Chan-Su;Han, Hee-Jeong;Ahn, Yu-Hwan;Moon, Jeong-Eon;Lee, Nu-Ree
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.75-78
    • /
    • 2006
  • The Korea Ocean Satellite Center (KOSC) is under development to establish in line with the launch of the first Korean multi-function geostationary satellite COMS (Communication, Ocean and Meteorological Satellite) scheduled in 2008. KOSC aims to receive, process and distribute Geostationary Ocean Color Sensor (GOCI) data on board COMS in near-real time. In this report, current status of KOSC development is presented in the following categories; site selection for KOSC, antenna design, GOCI data receiving and processing system, data distribution, future works.

  • PDF

A Method to Destripe Imaging Spectroradiometer Data of SZ-3

  • Xiaoxiang, Zhu;Tianxi, Fan;Qian, Huang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1278-1280
    • /
    • 2003
  • Striping is a main factor for imaging spectroradiometer data, which is obtained by multi-sensor scanning on spacecraft. The reason causing stripes and the development of striping removal methods are simply described in this paper, particularly, the principle of Matching Empirical Distribution Functions is introduced in detail. By using this method, some experiments are done to destripe imaging spectrometer data of SZ-3. The result shows that the method of Matching Empirical Distribution Functions is available for destirping Imaging spectroradiometer data of SZ-3, and the quality of image is improved obviously. This will help to process the future similar instruments data.

  • PDF

Automatic Registration Between KOMPSAT-2 and TerraSAR-X Images (KOMPSAT-2 영상과 TerraSAR-X 영상 간 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Chae, Tae-Byeong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.667-675
    • /
    • 2011
  • In this paper, we propose an automatic image-to-image registration between high resolution multi-sensor images. To do this, TerraSAR-X image was shifted according to the initial translation differences of the x and y directions between images estimated using Mutual Information method. After that, the Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on the similarities of their locations and gradient orientations. For extracting large number of evenly distributed matching points, only one point within each regular grid constructed throughout the image was extracted to the final matching point pair. The model, which combined the piecewise linear function with the global affine transformation, was applied to increase the accuracy of the geometric correction, and the proposed method showed RMSE lower than 5m in all study sites.

Development of Multi-function Sensor Integration and Data Process SW Module for Real-time Situation Recognition (실시간 상황 인식을 위한 다기능 센서 통합 및 데이터 처리 SW 모듈 개발)

  • Oh, Jung-Hei;Kim, Bong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.143-148
    • /
    • 2019
  • In modern society, developing and utilizing safety service and system environments is a very important and great interest. In particular, the provision of safety services to socially vulnerable groups such as children, the elderly, women, the disabled and foreigners has become a social issue. However, since most safety services and systems are applied to the general public, it is necessary to develop systems for socially vulnerable groups. Therefore, in this paper, we developed a system module that processes and transmits data to recognize the situation in real time and respond quickly. To this end, various sensors for real-time situation recognition were designed as integrated modules, and a safety system module was developed to analyze the collected data and transmit the processing results.

Development of Wide-Range Brightness Controller of LED Backlight for Avionic Displays (항공기 디스플레이용 LED 백라이트의 광대역 휘도 제어기 개발)

  • Lim, Soo-Hyun;Lim, Jeong-Gyu;Chung, Se-Kyo;Shin, Hwi-Beom;Shin, Min-Jae;Sohn, Seung-Gul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.287-294
    • /
    • 2008
  • This paper describes an implementation of a wide-range dimming controller of a LED backlight for Avionics applications such as a control display unit(CDU) and multi-function display(MFD). The digital dimming controller employing a current controlled buck converter and light sensor feedback is proposed. The proposed system provides a wide dimming control range of from 150fL to 0.05fL(3000:1) required for avionic displays. The experimental results are provided to show the control performance.

Analysis of Multi-Variable Control using Model Based Compensator (Model Based Compensator를 이용한 다변수 제어 분석)

  • Jung, Ji-Hyeon;Lee, Woo-Min;Yoo, Sam-Hyeon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.564-569
    • /
    • 2000
  • Model Based Compensator(MBC) is recently used for the analysis of multi-variable control in frequency domain. Target loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery will be continued in frequency domain until the plant with MBC comes close to the target loop. In this study, the technique using MBC is applied to the elevator vibration control system. It is found that this technique is very effective to control the vibration system.

  • PDF

Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties

  • Zhang, Taotao;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.975-989
    • /
    • 2010
  • Based on the theory of piezo-elasticity, the paper obtains the exact solutions of functionally graded piezoelectric hollow cylinders with different piezoelectric parameter $g_{31}$. Two kinds of piezoelectric hollow cylinders are considered herein. One is a multi-layered cylinder with different parameter $g_{31}$ in different layers; the other is a continuously graded cylinder with arbitrarily variable $g_{31}$. By using the Airy stress function method with plane strain assumptions, the exact solutions of the mechanic and electrical components of both cylinders are obtained when they are subjected to external voltage (actuator) and pressure (sensor), simultaneously. Furthermore, good agreement is achieved between the theoretical and numerical results, and useful conclusions are given.