• Title/Summary/Keyword: Multi-frontal Method

Search Result 20, Processing Time 0.025 seconds

Web-based CAE Service System for Collaborative Engineering Environment (협업 환경 기반 엔지니어링 해석 서비스 시스템 개발)

  • Kim K.I.;Kwon K.E.;Park J.H.;Choi Y.;Cho S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.619-620
    • /
    • 2006
  • In this paper, the CAE Service System for Collaborative Engineering Environment with web services and Multi-frontal Method has been investigated and developed. The enabling technologies such as SOAP and .NET Framework play great roles in the development of integrated distributed application software. In addition to the distribution of analysis modules, numerical solution process itself is again divided into parallel processes using Multi-frontal Method for computational efficiency. We believe that the proposed approach for the analysis can be extended to the entire product development process for sharing and utilizing common product data in the distributed engineering environment.

  • PDF

Implementation of Multi-adaptive Filter for EOG Removal and Biofeedback Output Controller

  • Ahn, Bo-Sep;Kim, Pil-Un;Cho, Jin-Ho;Kim, Myoung-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1650-1656
    • /
    • 2004
  • In this paper, a multi-adaptive filter is proposed for removing EOG and the 60 Hz power supply noise from EEG measured in the frontal lobe and the feedback output control method is implemented for biofeedback. The multi-adaptive filter has been implemented on the TMS320C6711 DSP system and the feedback output control algorithm has been realized by calculating the ratio of alpha wave on the TMS320C31 DSP system with real time performance. Through the experiment using the implemented multi-adaptive filter and feedback output controller, we demonstrate that the proposed adaptive filter effectively removes EOG and the 60 Hz power supply noise from the measured EEG in the frontal lobe and the feedback algorithm controls the level of stimulation by the ratio of the alpha wave.

  • PDF

A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2720-2736
    • /
    • 2013
  • Multi-view face detection has become an active area for research in the last few years. In this paper, a novel multi-view human face detection algorithm based on improved real Adaboost is presented. Real Adaboost algorithm is improved by weighted combination of weak classifiers and the approximately best combination coefficients are obtained. After that, we proved that the function of sample weight adjusting method and weak classifier training method is to guarantee the independence of weak classifiers. A coarse-to-fine hierarchical face detector combining the high efficiency of Haar feature with pose estimation phase based on our real Adaboost algorithm is proposed. This algorithm reduces training time cost greatly compared with classical real Adaboost algorithm. In addition, it speeds up strong classifier converging and reduces the number of weak classifiers. For frontal face detection, the experiments on MIT+CMU frontal face test set result a 96.4% correct rate with 528 false alarms; for multi-view face in real time test set result a 94.7 % correct rate. The experimental results verified the effectiveness of the proposed approach.

Application of Multi-Frontal Method in Collaborative Engineering Environment

  • Cho, Seong-Wook;Choi, Young;Lee, Gyu-Bong;Kwon, Ki-Eak
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.51-60
    • /
    • 2003
  • The growth of the World Wide Web and the advances in high-speed network access have greatly changed existing CAD/CAE environment. The WWW has enabled us to share various distributed product data and to collaborate in the design process. An international standard for the product model data, STEP, and a standard for the distributed object technology, CORBA, are very important technological components for the interoperability in the advanced design and manufacturing environment. These two technologies provide background for the sharing of product data and the integration of applications on the network. This paper describes a distributed CAD/CAE environment that is integrated on the network by CORBA and product model data standard STEP. Several prototype application modules were implemented to verify the proposed concept and the test result is discussed. Finite element analysis server are further distributed into several frontal servers for the implementation of distributed parallel solution of finite element system equations. Distributed computation of analysis server is also implemented by using CORBA for the generalization of the proposed method.

Finite Element Analysis with STEP in Distributive and Collaborative Environment (분산 협업 환경에서의 유한요소 해석에 관한 연구)

  • Cho, Seong-Wook;Kwon, Ki-Eak
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.384-392
    • /
    • 2006
  • In this research, the feasibility of distributed finite element analysis system with STEP and CORBA has been investigated. The enabling technologies such as CORBA and Java play key roles in the development of integrated and geographically distributed application software. In addition to the distribution of analysis modules, numerical solution process itself is again divided into parallel processes using multi-frontal method for computational efficiency. In contrast to the specially designed parallel process for specific hardware, CORBA-based parallel process is well suited for heterogeneous platforms over the network. The idea of Web-based distributed analysis system may be applied to the engineering ASP for design and analysis in the product development processes. We believe that the proposed approach for the analysis can be extended to the entire product development process for sharing and utilizing common product data in the distributed engineering environment, thus eventually provide basis for virtual enterprise.

Multi-view Human Recognition based on Face and Gait Features Detection

  • Nguyen, Anh Viet;Yu, He Xiao;Shin, Jae-Ho;Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1676-1687
    • /
    • 2008
  • In this paper, we proposed a new multi-view human recognition method based on face and gait features detection algorithm. For getting the position of moving object, we used the different of two consecutive frames. And then, base on the extracted object, the first important characteristic, walking direction, will be determined by using the contour of head and shoulder region. If this individual appears in camera with frontal direction, we will use the face features for recognition. The face detection technique is based on the combination of skin color and Haar-like feature whereas eigen-images and PCA are used in the recognition stage. In the other case, if the walking direction is frontal view, gait features will be used. To evaluate the effect of this proposed and compare with another method, we also present some simulation results which are performed in indoor and outdoor environment. Experimental result shows that the proposed algorithm has better recognition efficiency than the conventional sing]e view recognition method.

  • PDF

Facial Action Unit Detection with Multilayer Fused Multi-Task and Multi-Label Deep Learning Network

  • He, Jun;Li, Dongliang;Bo, Sun;Yu, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5546-5559
    • /
    • 2019
  • Facial action units (AUs) have recently drawn increased attention because they can be used to recognize facial expressions. A variety of methods have been designed for frontal-view AU detection, but few have been able to handle multi-view face images. In this paper we propose a method for multi-view facial AU detection using a fused multilayer, multi-task, and multi-label deep learning network. The network can complete two tasks: AU detection and facial view detection. AU detection is a multi-label problem and facial view detection is a single-label problem. A residual network and multilayer fusion are applied to obtain more representative features. Our method is effective and performs well. The F1 score on FERA 2017 is 13.1% higher than the baseline. The facial view recognition accuracy is 0.991. This shows that our multi-task, multi-label model could achieve good performance on the two tasks.

Parallel Computation on the Three-dimensional Electromagnetic Field by the Graph Partitioning and Multi-frontal Method (그래프 분할 및 다중 프론탈 기법에 의거한 3차원 전자기장의 병렬 해석)

  • Kang, Seung-Hoon;Song, Dong-Hyeon;Choi, JaeWon;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.889-898
    • /
    • 2022
  • In this paper, parallel computing method on the three-dimensional electromagnetic field is proposed. The present electromagnetic scattering analysis is conducted based on the time-harmonic vector wave equation and the finite element method. The edge-based element and 2nd -order absorbing boundary condition are used. Parallelization of the elemental numerical integration and the matrix assemblage is accomplished by allocating the partitioned finite element subdomain for each processor. The graph partitioning library, METIS, is employed for the subdomain generation. The large sparse matrix computation is conducted by MUMPS, which is the parallel computing library based on the multi-frontal method. The accuracy of the present program is validated by the comparison against the Mie-series analytical solution and the results by ANSYS HFSS. In addition, the scalability is verified by measuring the speed-up in terms of the number of processors used. The present electromagnetic scattering analysis is performed for a perfect electric conductor sphere, isotropic/anisotropic dielectric sphere, and the missile configuration. The algorithm of the present program will be applied to the finite element and tearing method, aiming for the further extended parallel computing performance.

A Novel Approach to Mugshot Based Arbitrary View Face Recognition

  • Zeng, Dan;Long, Shuqin;Li, Jing;Zhao, Qijun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.239-244
    • /
    • 2016
  • Mugshot face images, routinely collected by police, usually contain both frontal and profile views. Existing automated face recognition methods exploited mugshot databases by enlarging the gallery with synthetic multi-view face images generated from the mugshot face images. This paper, instead, proposes to match the query arbitrary view face image directly to the enrolled frontal and profile face images. During matching, the 3D face shape model reconstructed from the mugshot face images is used to establish corresponding semantic parts between query and gallery face images, based on which comparison is done. The final recognition result is obtained by fusing the matching results with frontal and profile face images. Compared with previous methods, the proposed method better utilizes mugshot databases without using synthetic face images that may have artifacts. Its effectiveness has been demonstrated on the Color FERET and CMU PIE databases.

A Parallel Algorithm for Large DOF Structural Analysis Problems (대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘)

  • Kim, Min-Seok;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.475-482
    • /
    • 2010
  • In this paper, an efficient two-level parallel domain decomposition algorithm is suggested to solve large-DOF structural problems. Each subdomain is composed of the coarse problem and local problem. In the coarse problem, displacements at coarse nodes are computed by the iterative method that does not need to assemble a stiffness matrix for the whole coarse problem. Then displacements at local nodes are computed by Multi-Frontal Sparse Solver. A parallel version of PCG(Preconditioned Conjugate Gradient Method) is developed to solve the coarse problem iteratively, which minimizes the data communication amount between processors to increase the possible problem DOF size while maintaining the computational efficiency. The test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF structural problems.