• Title/Summary/Keyword: Multi-forming

Search Result 508, Processing Time 0.021 seconds

Fabrication of large-capacity injection mold with the insert core for molding cap (인서트 코어 타입 Cap 성형용 대용량 금형 제작에 관한 연구)

  • Jung, Woo-Chul;Heo, Young-Moo;Shin, Gwang-Ho;Yoon, Gil-Sang;Lee, Jeong-Won
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.16-21
    • /
    • 2008
  • In recent, the demands of household cases and disposable products is increased significantly because a living standard of newly-emerging nations was risen. Therefore, multi-cavity mold and stack mold for the realization of high-productivity have been researched in forefront nations. In this paper, CAE analysis for minimizing the mold core deformation was performed. Finally, 64 cavities injection mold for molding cap which has the insert-type core was fabricated according to the result of CAE analysis.

  • PDF

A method of calculating strain state and forming severity analysis for axisymmetric sheet formed parts. (축대칭 프레스가공 제품의 변형률 예측기술과 변형여유 해석에의 적용)

  • 박기철;남재복;최원섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.173-184
    • /
    • 1994
  • A method of obtaining deformation severity of axisymmetric shape deep-drawn products was developed. Strain states of products produced by single or multi-stage drawing were predicted by using finite element analysis. This method used minimization of potential energy between the known shape of final product and the unknown in initial blank. And that was done numerically by nonlinear finite element method. Deformation theory of plasticity was used for practical purposes. From predicted strain states of drawn parts, deformation severity was found by using forming limit diagrams.

The Study of Roll-forming Technology for UHSS Hydroformed Parts (UHSS 하이드로포밍 개발을 위한 박육관의 롤 포밍 기술 연구)

  • Park, Sungpill;Kwon, Yongjai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • In the automotive industry, it is required to reduce weight of the car and improve fuel efficiency. Competitive pricing is also a very important issue. That's why application of welded steel tube is increasing in order to produce a vehicle with a competitive price. Also, hydroforming technology is asking more and more for thinner tubing to realize to a lighter vehicle design. Steel tube is produced through a multi-stage process called roll forming. In that case, bucking and work hardening should be considered key forming technology is to prevent buckling and minimize work hardening during steel tubing for hydroforming To prevent buckling, it is required to optimize forming process in order to minimize stretching in edge sections and hold tightly cross-section during welding. And to minimize work hardening, it is needed to know the proper process to avoid reforming.

A Rate Separating Multi-Channel Protocol for Improving Channel Diversity and Node Connectivity in IEEE 802.11 Mesh Networks (IEEE 802.11 메쉬 네트워크에서 채널 다양성과 노드 연결성 향상을 위한 레이트 분할 멀티 채널 프로토콜)

  • Kim, Sok-Hyong;Suh, Young-Joo;Kwon, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1152-1159
    • /
    • 2010
  • Wireless Mesh Networks (WMNs) provides Internet accesses to users by forming backbone networks via wireless links. A key problem of WMN is network capacity. For this, multi-channel and multi-rate functions of IEEE 802.11 can be utilized. Depending on channel assignments, multi-channel determines node connectivity and channel diversity. Also, in IEEE 802.11 multi-rate networks, the rate anomaly problem occurs, the phenomenon that low-rate links degrades the performance of high-rate links. In this paper, we propose rate separating multi-channel (RSMC) protocols that improves the node connectivity and channel diversity, and mitigates the rate anomaly problem. RSMC increases the channel diversity by forming tree-based WMNs and decreases the rate anomaly by separating different rate links on the tree via channels. In addition, it uses network connectivity (NC) algorithm to increase the node connectivity. Through simulations, we demonstrate that the RSMC shows improved performance than existing multi-channel protocols in terms of aggregate throughput, node connectivity, channel diversity.

FE Analysis on the Serrated Forming Process using Multi-action Pressing Die (복동금형을 이용한 돌기성형공정에 관한 유한요소해석)

  • Jang, D.H.;Ham, K.C.;Ko, B.D.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.429-435
    • /
    • 2008
  • In this paper, the serrated forming process is analyzed with finite element method. The seal should secure the overlapping portions of ligature, which has teeth for ligature to prevent from slipping each other after clamping. In the simulation, rigid-plastic finite element model has been applied to the serration forming process. Serration or teeth forming characteristics has been analyzed numerically in terms of teeth geometry based on different forming conditions. Analyses are focused to find the influence of different die movements and geometries on the tooth geometry, which is crucial for securing overlapping portions of ligature. Two major process variables are selected, which are the face angle and entry angle of punch, respectively. Extensive investigation has been performed to reveal the influences of different entry and face angles on the geometry of teeth formation in the simulation. Three different face angles of punch have been selected to apply to each simulation of serrated sheet forming process with every case of punch entry angles. Furthermore, tooth geometries predicted from simulation have been applied to the indention process for comparing proper tooth geometries to secure the sealing.

A Study on the Selection of Forward Flow Forming Conditions with Inconel718 Tube for Mortar Barrel Manufacturing (박격포 포신 제작을 위한 Inconel718 소재의 전진 유동성형 조건 선정에 관한 연구)

  • Ko, Se-Kwon;Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.51-59
    • /
    • 2019
  • Flow forming is an eco-friendly and high-efficiency plastic deformation process with fewer chips during a process which is specifically used to manufacture seamless tubular products like tire wheels, rocket motor cases etc. On the development of mortar barrel using Inconel718 tube, some flow formed products had dimensional errors on their thickness. In this study, our purpose is to optimize the process conditions with the smallest dimensional error. In order to find an optimum process condition, 2D axisymmetric FEM simulation analyses with Taguchi method were conducted. Geometric variables (attack angle, flatting angle, roller nose radius) and operating parameters (depth of forming, feed rate) are considered as control factors. Forward flow forming with single roller was first analyzed to determine the effective factors using AFDEX software and attack angle of the roller was identified as the most influential factor. Also, the nose radius of the rollers was confirmed as a significant factor in multi-rollers flow forming system. The effect of rollers offset values are also studied and finally, we proposed optimal conditions to improve the accuracy of flow forming process with Inconel718 tube for mortar barrel manufacturing.

A study on the performance improvement of the quality prediction neural network of injection molded products reflecting the process conditions and quality characteristics of molded products by process step based on multi-tasking learning structure (다중 작업 학습 구조 기반 공정단계별 공정조건 및 성형품의 품질 특성을 반영한 사출성형품 품질 예측 신경망의 성능 개선에 대한 연구)

  • Hyo-Eun Lee;Jun-Han Lee;Jong-Sun Kim;Gu-Young Cho
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.72-78
    • /
    • 2023
  • Injection molding is a process widely used in various industries because of its high production speed and ease of mass production during the plastic manufacturing process, and the product is molded by injecting molten plastic into the mold at high speed and pressure. Since process conditions such as resin and mold temperature mutually affect the process and the quality of the molded product, it is difficult to accurately predict quality through mathematical or statistical methods. Recently, studies to predict the quality of injection molded products by applying artificial neural networks, which are known to be very useful for analyzing nonlinear types of problems, are actively underway. In this study, structural optimization of neural networks was conducted by applying multi-task learning techniques according to the characteristics of the input and output parameters of the artificial neural network. A structure reflecting the characteristics of each process step was applied to the input parameters, and a structure reflecting the quality characteristics of the injection molded part was applied to the output parameters using multi-tasking learning. Building an artificial neural network to predict the three qualities (mass, diameter, height) of injection-molded product under six process conditions (melt temperature, mold temperature, injection speed, packing pressure, pacing time, cooling time) and comparing its performance with the existing neural network, we observed enhancements in prediction accuracy for mass, diameter, and height by approximately 69.38%, 24.87%, and 39.87%, respectively.

Development of Numerical Control System for Plate forming Automation (강판의 곡가공 자동화를 위한 수치제어 시스템의 개발)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • This paper deals with the development of an interface program for automatic plate forming, which can exchange information between the heating line information generation program and the automatic heating apparatus. In this paper, the performance of the developed interface program has been verified from the view point of numerical position control. By applying the interface program to the operation of the automatic heating apparatus, an experiment of line heating has been conducted for several steel plate models. Based on the experimental results, a simplified relation to estimate angular distortion has keen derived as a natural characteristic of the present automatic heating apparatus. As a result of the present study, the prototype of the automatic plate forming system has been constructed, and its application to the real surface models found in the ship will be presented in the near future.

Optimization of Sheet Metal Forming Process by using Decision-Making Theory (의사결정이론을 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.125-136
    • /
    • 2012
  • Wrinkle and fracture are two major defects frequently found in the sheet metal forming process. In this process there are more than one design attributes to optimize and several uncontrollable factors which cannot be ignored in determining the optimal values of design variables. Therefore, attempts to reduce defects through a traditional optimization technique are often led to failures. In this research, a new design method for reducing the wrinkle and fracture under uncontrollable factors is presented by using decision-making theory. To avoid the psychological difficulties in determining the scaling constants of the multi-attribute utility function by using the ordinary lottery questions, a pair-wise comparison procedure is adapted to avoid this problem. The effectiveness of the proposed method is illustrated through a robust design of sheet metal forming process of a side member of an automotive body.