• Title/Summary/Keyword: Multi-fault

Search Result 406, Processing Time 0.024 seconds

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

A Study on Fault Diagnosis and Performance Evaluation of Propulsion Equipment (추진장치의 고장진단과 성능특성에 관한 연구)

  • Han, Young-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.153-158
    • /
    • 2005
  • Recently, as the feasibility study shows that trans-Korea railway and trans-continental railway are advantageous, interest in high-speed railway system is increasing. Because railway vehicle is environment-friendly and safe compared with airplane and ship, its market-sharing increases gradually. KHST(Korean High Speed Train) has been developed by KRRI (Korea Railroad Research Institute) for last 6 years to satisfy the need. An electric railway system is composed of high-tech subsystems, among which main electric equipment such as transformers and converter are critical components determining the performance of rolling stock. We developed a measurement system for on-line test and evaluation of performances of KHST. The measurement system is composed of software part and hardware part. Perfect interface between multi-users is possible. A now method to measure temperature was applied to the measurement system. By using the system, fault diagnosis and performance evaluation of electric equipment in Korean High Speed Train was conducted during test running.

Application of Hierarchical Logic Based Expert System to the Power System Fault Diagnosis (계층 논리 기반 전문가 시스템의 전력계통 고장진단에의 적용)

  • Park, Yeong-Mun;Kim, Gwang-Won;Lee, Gwang-Ho;Jeong, Jae-Gil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.863-871
    • /
    • 1999
  • While Logic Based Expert System (LBES) has a merit of rapid and complete inference, it also has a defect of huge knowledge base. Hierarchical LBES (HLBES) replaces the assertion time inference of LBES with the multi-level logic minimization procedure, and it guarantees smaller knowledge base comparing with LBES. This paper has two contributions. The one is proposing so-called fact-minimization procedure which reduces not only the number of facts or measured events but also the size of knowledge base dramatically. The other contribution is application of HLBES and the proposed fact-minimization to the fault diagnosis of power system. The application is successfully performed in the example with the transmission system which takes 72 goals and 352 facts.

  • PDF

Optimizing Checkpoint Intervals for Real-Time Multi-Tasks with Arbitrary Periods (임의 주기를 가지는 실시간 멀티 태스크를 위한 체크포인트 구간 최적화)

  • Kwak, Seong-Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.193-200
    • /
    • 2011
  • This paper presents an optimal checkpoint strategy for fault-tolerance in real-time systems. In our environment, multiple real-time tasks with arbitrary periods are scheduled in the system by Rate Monotonic (RM) algorithm, and checkpoints are inserted at a constant interval in each task while the width of interval is different with respect to the task. We propose a method to determine the optimal checkpoint interval for each task so that the probability of completing all the tasks is maximized. Whenever a fault occurs to a checkpoint interval of a task, the execution time of the task would be prolonged by rollback and re-execution of checkpoints. Our scheme includes the schedulability test to examine whether a task can be completed with an extended execution time. A numerical experiment is conducted to demonstrate the applicability of the proposed scheme.

Adaptive Fault Diagnosis using Syndrome Analysis for Hypercube Network

  • Kim Jang-Hwan;Rhee Chung-Sei
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8B
    • /
    • pp.701-706
    • /
    • 2006
  • System-level diagnosis plays an important technique for fault detection in multi-processor systems. Efficient diagnosis is very important for real time systems as well as multiprocessor systems. Feng(1) proposed two adaptive diagnosis algorithms HADA and IHADA for hypercube system. The diagnosis cost, measured by diagnosis time and the number of test links, depends on the number and location of the faults. In this paper, we propose an adaptive diagnosis algorithm using the syndrome analysis. This removes unnecessary overhead generated in HADA and IHADA algorithm sand give a better performance compared to Feng's Method.

Analysis of transient stability of 154KV power systems in Korea by digital computer techniques (디지탈 계산기에 의한 우리나라 154KV계통의 과도안정도 해석)

  • Man-Choon Han;Sang-Hee Park;Young-Chan Kim
    • 전기의세계
    • /
    • v.17 no.4
    • /
    • pp.18-27
    • /
    • 1968
  • Analysis of the transient stability of power systems following disturbances involves many sets of non-linear differential equations. This paper attempts to analyze the transient stability of multi-machine power systems by the step by step method, using the electronic digital computer. The critical switching times and phase angles for the main 154KV transmission system in Korea, are given from the swing curves of the probable conditions. It is concluded that the system is, in general, stable if the relay is cut off within 12 cycles after the fault. However the fault of DAEGU-SANGJU branch, accompanying much real power, makes the system unstable when the raly is cut off within 4 cycles after fault or automatic voltage regulators are equipped in this branch.

  • PDF

Fault Detection in an Automatic Central Air-Handling Unit (자동 공조설비의 고장 검출 기술)

  • Lee, Won-Yong;Shin, Dong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.410-418
    • /
    • 1999
  • This paper describes the use of residual and parameter identification methods for fault detection in an air handling unit. Faults can be detected by comparing expected condition with the measured faulty data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system identification technique. In this study, AutoRegressive Moving Average with seXtrnal input(ARMAX) and AutoRegressive with eXternal input(ARX) models with both single-input/single-input and multi-input/single-input structures are examined. Model parameters are determined using the Kalman filter recursive identification method. Regression equations are calculated from normal experimental data and are used to compute expected operating variables. These approaches are tested using experimental data from a laboratory's variable-air-volume air-handling-unit.

  • PDF

A Fault Tolerant Control Technique for Hybrid Modular Multi-Level Converters with Fault Detection Capability

  • Abdelsalam, Mahmoud;Marei, Mostafa Ibrahim;Diab, Hatem Yassin;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.558-572
    • /
    • 2018
  • In addition to its modular nature, a Hybrid Modular Multilevel Converter (HMMC) assembled from half-bridge and full-bridge sub-modules, is able to block DC faults with a minimum number of switching devices, which makes it attractive for high power applications. This paper introduces a control strategy based on the Root-Least Square (RLS) algorithm to estimate the capacitor voltages instead of using direct measurements. This action eliminates the need for voltage transducers in the HMMC sub-modules and the associated communication link with the central controller. In addition to capacitor voltage balancing and suppression of circulating currents, a fault tolerant control unit (FTCU) is integrated into the proposed strategy to modify the parameters of the HMMC controller. On advantage of the proposed FTCU is that it does not need extra components. Furthermore, a fault detection unit is adapted by utilizing a hybrid estimation scheme to detect sub-module faults. The behavior of the suggested technique is assessed using PSCAD offline simulations. In addition, it is validated using a real-time digital simulator connected to a real time controller under various normal and fault conditions. The proposed strategy shows robust performance in terms of accuracy and time response since it succeeds in stabilizing the HMMC under faults.

Surge Characteristics Analysis and Reduction Method of Vacuum Circuit Breaker (진공차단기 스위칭 써지 특성 해석 및 저감 방안)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.190-195
    • /
    • 2013
  • Vacuum circuit breaker(VCB) has been widely used for interruption of load current and fault current for high voltage motor in the industrial field. Its arc extinguishing capability is excellent compared to other breakers. But it has the potential to cause multi reignition surge by high extinguishing capability. Surge voltage is generated by the opening and closing of VCB. Multi reignition surge of VCB is steep-fronted waveform. It may have a detrimental effect on the motor winding insulation. So, most of users install a protection device to limit steep-front waveform at the motor terminal or breaker side. So, most of users install a protection device at the motor terminal or breaker side. This protective device is surge absorber(SA) such as ZnO and RC type. In this study, we analyzed whether there is any effect when two type SA is applied to the VCB multi reignition surge. We confirmed that ZnO SA is slightly more effective than RC SA for reduction of multi reignition surge.

Design and Management of Survivable Network: Concepts and Trends

  • Song, Myeong-Kyu
    • International Journal of Contents
    • /
    • v.5 no.2
    • /
    • pp.43-52
    • /
    • 2009
  • The article first presents a broad overview of the design and management for survivable network. We review the concept of network survivability, various protection and restoration schemes. Also we introduce design architectures of Quantitative model and a Survivable Ad hoc and Mesh Network Architecture. In the other side of study like these(traditional engineering approach), there is the concept of the survivable network systems based on an immune approach. There is one sample of the dynamic multi-routing algorithms in this paper.