• 제목/요약/키워드: Multi-fault

검색결과 406건 처리시간 0.027초

HVAC 시스템의 중복고장 검출을 위한 실험적 연구 (An Experimental Study on Multi-Fault Detection and Diagnosis Analysis of HVAC System)

  • 조성환;홍영주;양훈철;안병천
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.932-941
    • /
    • 2004
  • The objective of this study is to detect the multi-fault of HVAC system using a new pattern classification technique. To classify the effect of single-fault in determining the pattern, supply air temperature, OA-damper, supply fan, and air flowrate were chosen as experimental parameters. The combination of supply temperature, flow rate, supply fan and OA-damper were chosen as multi-fault conditions. Three kinds of patterns were introduced in the analysis of multi-fault problem. To solve multi-fault problem, the new pattern classification technique using residual ratio analysis was introduced to detect the multi-fault as well as single-fault. The residual ratio could diagnose single-fault or multi-fault into several patterns.

Efficient Fault-Recovery Technique for CGRA-based Multi-Core Architecture

  • Kim, Yoonjin;Sohn, Seungyeon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권2호
    • /
    • pp.307-311
    • /
    • 2015
  • In this paper, we propose an efficient fault-recovery technique for CGRA (Coarse-Grained Reconfigurable Architecture) based multi-core architecture. The proposed technique is intra/inter-CGRA co-reconfiguration technique based on a ring-based sharing fabric (RSF) and it enables exploiting the inherent redundancy and reconfigurability of the multi-CGRA for fault-recovery. Experimental results show that the proposed approaches achieve up to 73% fault recoverability when compared with completely connected fabric (CCF).

A Novel Online Multi-section Weighed Fault Matching and Detecting Algorithm Based on Wide-area Information

  • Tong, Xiaoyang;Lian, Wenchao;Wang, Hongbin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2118-2126
    • /
    • 2017
  • The large-scale power system blackouts have indicated that conventional protection relays that based on local signals cannot fit for modern power grids with complicated setting or heavily loaded-flow transfer. In order to accurately detect various faulted lines and improve the fault-tolerance of wide-area protection, a novel multi-section weighed fault matching and detecting algorithm is proposed. The real protection vector (RPV) and expected section protection vectors (ESPVs) for five fault sections are constructed respectively. The function of multi-section weighed fault matching is established to calculate the section fault matching degrees between RPV and five ESPVs. Then the fault degree of protected line based on five section fault degrees can be obtained. Two fault detecting criterions are given to support the higher accuracy rate of detecting fault. With the enumerating method, the simulation tests illustrate the correctness and fault-tolerance of proposed algorithm. It can reach the target of 100% accuracy rate under 5 bits error of wide-area protections. The influence factors of fault-tolerance are analyzed, which include the choosing of wide-area protections, as well as the topological structures of power grid and fault threshold.

22.9[kV] 다중접지 배전계통에서 고장전류의 접지저항 영향 분석 (The Effect by Grounding Resistance of the ground Fault in the 22.9[kV] Multi-ground Distribution System)

  • 정금영;최선규;심건보;김경철
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.85-89
    • /
    • 2010
  • During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multi-grounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A effect by grounding resistance of poles of ground fault current in the 22.9[kV] multi-ground distribution system. by field tests.

Multi-Agent System for Fault Tolerance in Wireless Sensor Networks

  • Lee, HwaMin;Min, Se Dong;Choi, Min-Hyung;Lee, DaeWon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1321-1332
    • /
    • 2016
  • Wireless sensor networks (WSN) are self-organized networks that typically consist of thousands of low-cost, low-powered sensor nodes. The reliability and availability of WSNs can be affected by faults, including those from radio interference, battery exhaustion, hardware and software failures, communication link errors, malicious attacks, and so on. Thus, we propose a novel multi-agent fault tolerant system for wireless sensor networks. Since a major requirement of WSNs is to reduce energy consumption, we use multi-agent and mobile agent configurations to manage WSNs that provide energy-efficient services. Mobile agent architecture have inherent advantages in that they provide energy awareness, scalability, reliability, and extensibility. Our multi-agent system consists of a resource manager, a fault tolerance manager and a load balancing manager, and we also propose fault-tolerant protocols that use multi-agent and mobile agent setups.

다수기 PSA 수행을 위한 새로운 정량화 방법 (A New Quantification Method for Multi-Unit Probabilistic Safety Assessment)

  • 박성규;정우식
    • 한국안전학회지
    • /
    • 제35권1호
    • /
    • pp.97-106
    • /
    • 2020
  • The objective of this paper is to suggest a new quantification method for multi-unit probabilistic safety assessment (PSA) that removes the overestimation error caused by the existing delete-term approximation (DTA) based quantification method. So far, for the actual plant PSA model quantification, a fault tree with negates have been solved by the DTA method. It is well known that the DTA method induces overestimated core damage frequency (CDF) of nuclear power plant (NPP). If a PSA fault tree has negates and non-rare events, the overestimation in CDF drastically increases. Since multi-unit seismic PSA model has plant level negates and many non-rare events in the fault tree, it should be very carefully quantified in order to avoid CDF overestimation. Multi-unit PSA fault tree has normal gates and negates that represent each NPP status. The NPP status means core damage or non-core damage state of individual NPPs. The non-core damage state of a NPP is modeled in the fault tree by using a negate (a NOT gate). Authors reviewed and compared (1) quantification methods that generate exact or approximate Boolean solutions from a fault tree, (2) DTA method generating approximate Boolean solution by solving negates in a fault tree, and (3) probability calculation methods from the Boolean solutions generated by exact quantification methods or DTA method. Based on the review and comparison, a new intersection removal by probability (IRBP) method is suggested in this study for the multi-unit PSA. If the IRBP method is adopted, multi-unit PSA fault tree can be quantified without the overestimation error that is caused by the direct application of DTA method. That is, the extremely overestimated CDF can be avoided and accurate CDF can be calculated by using the IRBP method. The accuracy of the IRBP method was validated by simple multi-unit PSA models. The necessity of the IRBP method was demonstrated by the actual plant multi-unit seismic PSA models.

신경회로망기반 다중고장모델에 의한 비선형시스템의 고장진단 (Fault Diagnosis of the Nonlinear Systems Using Neural Network-Based Multi-Fault Models)

  • 이인수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.115-118
    • /
    • 2001
  • In this paper we propose an FDI(fault detection and isolation) algorithm using neural network-based multi-fault models to detect and isolate single faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output.

  • PDF

퍼지 알고리즘을 이용한 시스템 멀티 에어컨의 고장진단 알고리즘 개발 (Fuzzy Algorithm for FDD Technique Development of System Multi-Air Conditioner)

  • 최창식;태상진;김훈모;조금남;문제명;김종엽;권형진
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1220-1228
    • /
    • 2005
  • Fault detection and diagnostic (FDD) systems have the potential to reduce equipment downtime, service costs, and utility costs. In this study, model based algorithm and fuzzy algorithm were used to detect and diagnose various fault at System multi-air conditioner. various fault include the Refrigerant Low charging, Fouling of Indoor Heat Exchanger, Fouling of Outdoor Heat Exchanger A experimental verification was conducted in the 6HP System multi-air conditioner on an 8-floor building. Test results showed diagnosis result about 78 $\~$ 90$\%$ for given faults. This Study lays the foundation fur future work on develope the real-time fault detection and diagnosis system for the System multi-air conditioner.

보일러-터빈 제어시스템의 측정기 고장검출 (A Sensor Fault Detection for Boiler-Turbine Control System)

  • 류석환
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권1호
    • /
    • pp.37-43
    • /
    • 2014
  • This paper deals with a design of observer based fault detection filter for a boiler-turbine control system. The goal is to present a method for rapid sensor fault detection in order to enhance the reliability of boiler-turbine operation in the thermal power plant. Our fault detection filter can be designed via solutions of linear matrix inequalities. In order to demonstrate the efficacy of our design method, numerical simulations are provided.

푸리에 변환을 이용한 다중 재폐로방식에서의 사고전류 특징 추출 (Feature Extraction of Fault Current using Fourier Transform in the Multi-Shot Reclosing Scheme)

  • 오정환;윤상윤;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권2호
    • /
    • pp.50-55
    • /
    • 2000
  • This paper presents the feature extraction of fault currents related to the multi-shot reclosing scheme in the power distribution system. In order to get the fault current waveform, we have measured the fault currents by the fault recorders which have been installed at the secondary side of 154/22.9[kV] substation transformer. These waveforms are classified into temporary and permanent fault. For the classified waveforms, Fourier transform is used to extract the feature of the fault current waveforms. After the waveforms are analyzed by using Fourier transform, the magnitude spectrum and the relative variation of THD (Total Harmonic Distortion) are calculated. And then the relative variation of THD is great in the temporary faults, and is small in the permanent faults.

  • PDF