• Title/Summary/Keyword: Multi-factor Dynamic Model

Search Result 40, Processing Time 0.028 seconds

Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석)

  • Kim, Byeong-Hee;Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.

Development of the Dynamic Simulation Program for the Multi-Inverter Heat Pump Air-Conditioner (멀티 인버터 히트펌프의 동특성 해석 프로그램의 개발)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1079-1088
    • /
    • 2001
  • A dynamic simulation model was developed to analyse the transient characteristics of a multi-inverter heat pump. The programs included a basic air conditioning system such as a evaporator, condenser, compressor, linear electronic expansion valve (LEV) and by-pass circuit. The theoretical model was derived from mass conservation and energy conservation equations to predict the performance of the multi-inverter heat pump at various operating conditions. Calculated results were compared with the values obtained from the experiments at different operation frequencies of compressor, area of the LEV and configuration of indoor units operation. The results of the simulation model showed a good agreement with the experimental ones, so that the model could be used as an efficient tool for thermodynamic design and control factor design of air-conditioners.

  • PDF

The Ground Vibration Test on an Aircraft and FE Model Update (항공기 지상 진동 시험 및 동특성 모델의 개선)

  • 유홍주;변관화;박금룡
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.690-699
    • /
    • 1998
  • This paper discusses the techniques, procedures and the results of the ground vibration test(GVT) performed on the development aircraft and the simple procedure of FE model updating technique from the GVT results. The GVT was carried out using random excitation technique with MIMO(Multi-Input-Multi-Output) data acquistion method, and taking full advantage of poly-reference global parameter estimation technique to identify the vibration modes. In dynamic FE modeling, the aircraft was represented by beam elements and all dynamic analysis was performed using MSC/NASTRAN for this model. In updating procedure, the stiffness of the beam model was adjusted iteratively so as to get the natural frequencies and mode shapes close to the GVT results.

  • PDF

Development and Assessment of a Dynamic Fate and Transport Model for Lead in Multi-media Environment

  • Ha, Yeon-Jeong;Lee, Dong-Soo
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • The main objective was to develop and assess a dynamic fate and transport model for lead in air, soil, sediment, water and vegetation. Daejeon was chosen as the study area for its relatively high contamination and emission levels. The model was assessed by comparing model predictions with measured concentrations in multi-media and atmospheric deposition flux. Given a lead concentration in air, the model could predict the concentrations in water and soil within a factor of five. Sensitivity analysis indicated that effective compartment volumes, rain intensity, scavenging ratio, run off, and foliar uptake were critical to accurate model prediction. Important implications include that restriction of air emission may be necessary in the future to protect the soil quality objective as the contamination level in soil is predicted to steadily increase at the present emission level and that direct discharge of lead into the water body was insignificant as compared to atmospheric deposition fluxes. The results strongly indicated that atmospheric emission governs the quality of the whole environment. Use of the model developed in this study would provide quantitative and integrated understanding of the cross-media characteristics and assessment of the relationships of the contamination levels among the multi-media environment.

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han;Huoyue Xiang;Xuli Chen;Yongle Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

Comparison of Dynamic Responses According to Anchorage Type of Suspesion Bridges (현수교의 정착 형식에 따른 이동하중에 의한 동적 응답의 비교)

  • Suh, Jeong In;Kim, Ho Kyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.103-110
    • /
    • 2000
  • The suspension bridge is divided by an earth anchor and a self-anchor type according to the anchorage type. This study is to evaluate the dynamic effect of moving vehicles to suspension bridges. The results were presented with the dynamic magnification factor (DMF) by the effect of vehicle speed and weight according to the anchorage type. The vehicle model has 6 degrees of freedom to idealize nonlinear multi-leaf suspensions and elastic tires of tractor-trailer. The bridge was modelled with the 3-dimensional frame element and 3-dimensional elastic catenary cable element. The condition of deck surface is considered using the actual road spectra.

  • PDF

System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network (지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명)

  • Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

Review of Regulation for Rollover Test and Evaluation of Safety for Buses by using Simulation of Multi-body Dynamics (다물체 동역학 시뮬레이션을 통한 버스의 전복 시험 규정과 안전성 평가에 관한 고찰)

  • Park, Seung Woon;Choi, Yo Han;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2022
  • In South Korea, to evaluate the rollover safety of domestic vehicles, the maximum slope angle of the vehicle is specified, which is verified by the rollover safety test of driving vehicles. However, the domestic rollover safety test is not suitable for buses, because the small amount of static stability factor (SSF) will invalidate the rollover experimental equation due to the high center of mass position of buses. To solve the above problems, a dynamic model of the bus is prepared with assumptions of mass and suspension spring properties. Subsequently, the maximum slope angle of the model was computed by using the simulation of multi-body dynamics, and the result was compared with actual test results to validate the dynamics model. Also, the rollover Fishhook (roll stability) test was conducted in the simulation for driving model. During the simulation, roll angle and roll rate were calculated to check if a rollover occurred. Through the rollover simulation of buses, the domestically regulated formula for rollover safety and the procedure of rollover test for driving vehicles are evaluated. The conclusion is that the present regulation of rollover test should be reconsidered for buses to ensure to get the valid results for rollover safety.

Study on Daylight Inflow Environment Consequent on the Length of Light Shelf and Slat Angle Control for Fostering Visual Environment in Patient Rooms of Hospital - By Dynamic Daylight Simulation Using Weather Data - (종합병원 병실 내 시환경 조성을 위한 광선반 길이 및 Slat각 제어에 따른 자연채광 유입 환경 연구 - 기상데이터 기반 동적 자연채광 시뮬레이션을 기반으로 -)

  • Cho, Ju Young;Lee, Ki Ho;Lee, Hyo Won
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.113-121
    • /
    • 2012
  • A hospital is the most important infra-facility of the places which take care of people's body in social environment. There exist several environmental factors in the ways to heal the human body in hospital ward, but this study tried to look into the improvable pleasant sickroom environment with focus on light environment among the factors. In other words, this study aims at the research on proper daylight inflow into sickroom space as basic data for understanding the link between healing environment and natural lighting. In the simulation analysis through this research, this study completed the initial simulation using Autodesk Revit 2011 with focus on two types of individual multi-bed room units of the two general hospitals located in Gwangju City. This study made a simulation analysis of The two multi-bed rooms looking to the west using the weather data on Gwangju district, which is the strong point of ECOTECT2011. Conclusively, looking into the analysis of the simulation model in time of attaching the length of in & outside light shelf, the angle controlling of light shelf, the daylight factor and DA were found to show the tendency to decrease in the numerical value due to the decrease in sunlight inflow as the simulation model moved more toward the room from the window in comparison with the existing analysis of multi-bed rooms. Particularly, this study was able to read that the daylight factor and DA were more decreasing to improve at the light shelf than the existing bedrooms; conclusively, this study judges that the natural lighting simulation analysis could be helpful in improving the healing environment as basic data.