• Title/Summary/Keyword: Multi-enzymes

Search Result 52, Processing Time 0.025 seconds

Effect of Superoxide Dismutase and Low Molecular Mediators on Lignin Degradation

  • Leonowicz, Andrzej;Matuszewska, Anna;Luterek, Jolanta;Ziegenhagen, Dirk;Wojtas-Wasilewska, Maria;Hofrichter, Martin;Rogalski, Jerzy;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.1-14
    • /
    • 1999
  • As the biodegradation of wood constituents has been understood as a multi-basidiomycetes and enzymatic processes, this review will focus on the roles of low molecular compounds and radicals working in harmony with fungal enzymes. Wood rotting basidiomycete fungi penetrate wood, and lead to more easily metabolize carbohydrates of the wood complex. The white-rot fungi, having versatile enzymes, are able to attack directly the "lignin barrier". They also use a multi-enzyme system including so-called "feedback" type enzymes allowing for simultaneous degradation of lignin and carbohydrates. The multi-enzymes including laccase support the proposed route by explaining how the high molecular weight enzymes can function in the wood complex. These enzymes may function separately or cooperate each other. In addition, veratryl alcohol oxidase, cellobiose dehydrogenase, arylalcohol dehydrogenase, and particularly low molecular mediators and radicals have an important role in wood biodegradation. However, the possibility of other mechanism as well as other enzymes, as operating as feedback systems in the process of wood degradation, could not be excluded.

  • PDF

Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues

  • Suwannarangsee, Surisa;Arnthong, Jantima;Eurwilaichitr, Lily;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1427-1437
    • /
    • 2014
  • Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, ${\beta}$-glucosidase, xylanase, and ${\beta}$-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of ${\beta}$-glucosidase and core hemicellulases (xylanase and ${\beta}$-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external ${\beta}$-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

Effect of multi-enzymes supplementation on growth performance, meat quality, ileal digestibility, digestive enzyme activity and caecal microbiota in broilers fed low-metabolizable energy diet

  • Yaqoob, Muhammad Umar;Yousaf, Muhammad;Iftikhar, Mubashir;Hassan, Safdar;Wang, Geng;Imran, Safdar;Zahid, Muhammad Umer;Iqbal, Waqar;Wang, Minqi
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.1059-1068
    • /
    • 2022
  • Objective: This study was conducted to evaluate the effect of using low energy diet with multi-enzymes supplementation on different biological parameters in broilers. Methods: Three hundred Arbor Acres broiler chicks were randomly divided into three groups (Cont, standard metabolizable energy(ME); L-ME, ME reduced by 50 kcal/kg without enzyme; and L-ME-MES, L-ME diet was supplemented with multi-enzymes) with five replicates per group (20 chicks per replicate) at the start of second week. Grower and finisher diets were formulated according to breed specific guide and offered with free access in respective phase (two weeks for grower [8 to 21 d]; two weeks for finisher [22 to 35 d]). External marker method was used to measure the nutrient digestibility. After feeding trial, fifteen birds (one bird per replicate) were selected randomly and slaughtered for samples collection. Results: The results exhibited no effect (p>0.05) of dietary treatments on all parameters of growth performance, carcass traits, relative weight of internal organs except bursa and overall parameters of thigh meat quality. Relative weight of bursa was significantly (p<0.05) higher in L-ME than control. Multi-enzymes supplementation in low-ME diet significantly (p<0.05) improved the breast meat pH 24 h, digestibility of crude protein, duodenum weight and length, jejunal morphology, counts of Lactobacillus spp. and Bifidobacterium spp., lipase and protease activities than control. Jejunum length was increased in both L-ME and L-ME-MES treatments than that of the control (p<0.05). Breast meat cooking loss and color lightness was lower in L-ME (p<0.05) than control. Conclusion: It can therefore be concluded that broilers could be reared on low energy diet with supplementation of multi-enzymes without compromising the growth performance. In addition, it is beneficial for other biological parameters of broilers.

Qualitative Study on Consumer Experience of Digestive Enzymes Containing Medicinal Herbs (한약재 함유 소화효소제품 복용에 대한 소비자들의 체험에 관한 질적 연구)

  • Yoon, Sang-Hoon;Leem, Jungtae;Yun, Younghee;Choi, Ye-Yong;Lee, Eunji;Park, Jongseung;Cheong, Moonjoo
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.1
    • /
    • pp.14-28
    • /
    • 2020
  • Objectives: The aim of this study was to analyze consumer experience with Digestive Enzymes, a digestive enzyme product that includes medicinal herbs (Multi-Zyme®). The goal was to provide basic data on improvements and marketability of future digestive enzyme products containing medicinal herbs. Methods: Qualitative research was conducted to explore the current participants' experience. In-depth interviews with a semi-structured interview guide were conducted to investigate the experience and perception of the participants. The participants were recruited using snowball sampling and purposive sampling, and a qualitative content analysis method was adopted. Credibility was ensured by adopting a member check, triangulation, and peer debriefing method. Results: In-depth interviews were completed with a total of 8 participants. The collected data were classified into 16 codes and then further divided into the following seven categories: direct buying, indirect buying, effects, questions, recommendations, positive perception, and negative perception. The categories were grouped into three themes: 'Experience of purchasing existing health foods', 'Experience of taking Multi-Zyme', and 'Opinions on selling Multi-Zyme at Korean medicine clinics'. Conclusion: The participants experienced effect of the Multi-Zyme® and were willing to recommend it around. However, the Korean medicine doctors need to inform consumers about the dose and duration when taking Multi-Zyme® to prevent abuse. Some consumers may trust Multi-Zyme® sales from Korean medicine clinics, but some held opinions that those sales were not trustworthy, so promotion and improvement are needed.

Effects of exogenous enzymes from invertebrate gut-associated bacteria on volatile organic compound emissions and microbiota in an in vitro pig intestine continuous fermentation model

  • Jong-Hoon Kim;Ho-Yong Park;Kwang-Hee Son
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.2
    • /
    • pp.67-77
    • /
    • 2024
  • This study aims to assess the efficacies of exogenous enzymes, derived from invertebrate gut-associated microbes, as feed additives, in reducing volatile organic compound (VOC) emissions using an in vitro pig intestine continuous fermentation system. An in vitro continuous fermentation model was used to simulate a comparable bionic digestion system by co-reacting feed, enzymatic additives (arazyme, mannanase, and xylanase, derived from the gut bacteria of Nephila clavata, Eisenia fetida, and Moechotypa diphysis, respectively), and gastrointestinal microbes, followed by an analysis of their correlations. A significant correlation was observed between exogenous enzyme supplementation and reduced VOC emissions in the fecal phase of continuous fermentation (p < 0.05). The concentration of VOCs decreased by 3.75 and 2.75 ppm in the treatment group following arazyme and multi-enzyme supplementation, respectively, compared to that in the control group (7.83 ppm). In addition, supplementation with arazyme and multiple enzymes significantly affected the microbial composition of each fermentation phase (p < 0.05). In particular, Lactiplantibacillus pentosus and Pediococcus pentosaceus, which changed in abundance according to arazyme or multi-enzyme supplementation, exhibited a positive relationship with VOC emissions. These results suggest that exogenous enzymes derived from invertebrate gut-associated bacteria can be efficiently applied as feed additives, leading to a reduction in VOC emissions.

Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

  • Hwang, In Sun;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1), which is associated with fumonisin B1 bio-synthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

Multicarbohydrase Enzymes for Non-ruminants

  • Masey O'Neill, H.V.;Smith, J.A.;Bedford, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.290-301
    • /
    • 2014
  • The first purpose of this review is to outline some of the background information necessary to understand the mechanisms of action of fibre-degrading enzymes in non-ruminants. Secondly, the well-known and understood mechanisms are described, i) eliminating the nutrient encapsulating effect of the cell wall and ii) ameliorating viscosity problems associated with certain Non Starch Polysaccharides, particularly arabinoxylans and ${\beta}$-glucans. A third, indirect mechanism is then discussed: the activity of such enzymes in producing prebiotic oligosaccharides and promoting beneficial cecal fermentation. The literature contains a wealth of information on various non starch polysaccharide degrading enzyme (NSPase) preparations and this review aims to conclude by discussing this body of work, with reference to the above mechanisms. It is suggested that the way in which multi- versus single-component products are compared is often flawed and that some continuity should be employed in methods and terminology.

Multi-step Reactions on Microchip Platform Using Nitrocellulose Membrane Reactor

  • Park, Sung-Soo;Joo, Hwang-Soo;Cho, Seung-Il;Kim, Min-Su;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.257-262
    • /
    • 2003
  • A straightforward and effective method is presented for immobilizing enzymes on a microchip platform without chemically modifying a micro-channel or technically microfabricating a column reactor and fluid channel network. The proposed method consists of three steps: the reconstitution of a nitrocellulose (NC) membrane on a plane substrate without a channel network, enzyme immobilization on the NC membrane, and the assembly of another substrate with a fabricated channel network. As a result, enzymes can be stably and efficiently immobilized on a microchip. To evaluate the proposed method, two kinds of enzymatic reaction are applied: a sequential two-step reaction by one enzyme, alkaline phosphatase, and a coupled reaction by two enzymes, glucose oxidase and peroxidase, for a glucose assay.

Inference of Aspergillus fumigatus Pathways by Computational Genome Analysis: Tricarboxylic Acid Cycle (TCA) and Glyoxylate Shunt

  • Do, Jin-Hwan;Anderson, Michael-J.;Denning, David-W.;Erich, Bornberg-Bauer
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.74-80
    • /
    • 2004
  • Aspergillus fumigatus is one of the most common fungi in the human environment, both in-doors and out-doors. It is the main causative agent of invasive aspergillosis, a life-threatening mycosis among immunocompromised patients. The genome has been sequenced by an international consortium, including the Wellcome Trust Sanger Institute (U.K.) and The Institute for Genomic Research (TIGR, U.S.A.), and a ten times whole genome shotgun sequence assembly has been made publicly available. In this study, we identified tricarboxylic acid (TCA) cycle enzymes of A. fumigatus by comparative analysis with four other fungal species. The open reading frames showed high amino acid sequence similarity with the other fungal citric acid enzymes and well-conserved functional domains. All genes present in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, and Neurospora crassa were also found in A. fumigatus. In addition, we identified four A. fumigatus genes coding for enzymes in the glyoxylate shunt, which may be required for fungal virulence. The architecture of multi-gene encoded enzymes, such as isocitrate dehydrogenase, 2-ketoglutarate, succinyl-CoA synthetase, and succinate dehydrogenase was well conserved in A. fumigatus. Furthermore, our results show that genes of A. fumigatus can be detected reliably using GlimmerM.

Expression and Activity of Citrus Phytoene Synthase and $\beta$-Carotene Hydroxylase in Escherichia coli

  • Kim, In-Jung;Ko, Kyong-Cheol;Nam, Tae-Sik;Kim, Yu-Wang;Chung, Won-Il;Kim, Chan-Shick
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.212-218
    • /
    • 2003
  • Citrus phytoene synthase (CitPsy) and ${\beta}$-carotene hydroxylase (CitChx), which are involved in caroteinoid biosynthesis, are distantly related to the corresponding bacterial enzymes from the point of view of amino acid sequence similarity. We investigated these enzyme activities using Pantoea ananatis carotenoid biosynthetic genes and Escherichia coli as a host cell. The genes were cloned into two vector systems controlled by the T7 promoter. SDS-polyacrylamide gel electrophoresis showed that CitPsy and CitChx proteins are normally expressed in E. coli in both soluble and insoluble forms. In vivo complementation using the Pantoea ananatis enzymes and HPLC analysis showed that ${\beta}$-carotene and zeaxanthin were produced in recombinant E. coli, which indicated that the citrus enzymes were functionally expressed in E. coli and assembled into a functional multi-enzyme complex with Pantoea ananatis enzymes. These observed activities well matched the results of other researchers on tomato phytoene synthase and Arabidopsis and pepper ${\beta}$-carotene hydroxylases. Thus, our results suggest that plant carotenoid biosynthetic enzymes can generally complement the bacterial enzymes and could be a means of carotenoid production by molecular breeding and fermentation in bacterial and plant systems.