• 제목/요약/키워드: Multi-echo sequence

검색결과 18건 처리시간 0.019초

일회 영상으로 확산텐서 자기공명영상을 얻을 수 있는 다편-다에코 펄스 경사자장 스핀에코(MePGSE) 시퀀스의 초기 결과 (Multi-slice Multi-echo Pulsed-gradient Spin-echo (MePGSE) Sequence for Diffusion Tensor Imaging MRI: A Preliminary Result)

  • 장건호
    • 한국의학물리학회지:의학물리
    • /
    • 제18권2호
    • /
    • pp.65-72
    • /
    • 2007
  • 대부분의 임상용 자기공명영상 장치에서 확산텐서(difiusion tensor) 영상을 얻기 위하여 에코플렌(EPI) 스핀에코(spin-echo) 시퀀스를 사용한다. 하지만 이 영상법은 자화감수성에 매우 예민한 단점이 있다. 따라서 본 연구의 목적은 자화감수성에 의해 발생하는 영상의 변질을 최소화하면서 확산텐서를 한번에 얻을 수 있는 시퀀스를 개발하는데 있다. 모든 확산 텐서 성분을 한번에 얻기 위하여 다편(multi-slice) 8에코 스핀에코 시퀀스(MePGSE)가 개발되었다. 모든 180도 펄스는 기존에 사용된 방법과는 달리 선택된(slice selective) 경사자장을 이용하였다. 처음 7개의 에코 영상은 확산텐서 영상을 위하여 사용하였고, 마지막 에코 영상에서는 영상을 얻는 경사자장은 사용하지 않고 남아있는 자화를(residual magnetization) 최소화하기 위하여 삼차원 경사자장(crusher gradients)만을 사용하였다. 따라서 6개의 텐서 성분을 단 한번의 실험에 의하여 얻을 수 있었다. 이 시퀀스를 사용하여 물과 수박을 이용하여 실험을 하였으며 물에서의 확산 값이 기존에 출판된 값과 유사하게 나타나 본 연구에서 MePGSE 시퀀스의 신뢰를 가질 수 있었다.

  • PDF

악관절에 대한 자기 공명 영상의 연구 (A STUDY ON MAGNETIC RESONANCE IMAGING OF THE TEMPOROMANDIBULAR JOINT)

  • 김형식;김재덕
    • 치과방사선
    • /
    • 제20권2호
    • /
    • pp.187-198
    • /
    • 1990
  • Examinations of the temporomandibular joints were performed on a 1.5 Tesla magnetic resonance (MR) system. An MR surface receiver coil 3 inch in diameter was placed on plastic frame, the patient's head being placed in the frame so that the coil was pressed against the temporal region. In taking advantage of the magnetic resonance imaging that has been studied briskly till now, author obtained the images of parasagittal and paracoronal planes about the temporomandibular joint by using MPGR (Multi-Planar Gradient Recalled), GRASS (Gradient Recalled Acquisition in the Steady State), and CSMEMP (Contiguous Slice Multiple Echo, Multi-Planar), that differ from the Spin Echo pulse sequence which the previous authors used. Five subjects with no symptoms of temporomandibular joint pain and dysfunction were studied. The plane images obtained by these methods were compared with those by Spin Echo pulse sequence. The results were as follows: 1. The optimal repetition times (TR) and echo times (TE) for T.M.J. image were; a. 400 msec and 18 msec in PMGR pulse sequence. b. 40 msec and 12 msec in GRASS pulse sequence. c. 700 msec and 30 msec in CSMEMP pulse sequence. d. 500 msec and 20 msec in Spin Echo pulse sequence. 2. When the MPGR pulse sequence was using, T2-weighted image was obtained in very short time. On the image of the paracoronal plane by GRASS pulse sequence, meniscus showed the moderate signal intensity, and the meniscus and its anteromedial, posterolateral attachments were observed definitely with gray color. 4. The signal intensity of Spin Echo pulse sequence was equal to that of CSMEMP pulse sequence, but the image by CSMEMP pulse sequence showed relatively lower level in its resolution.

  • PDF

간 전이환자에서 최적의 펄스시퀀스에 따른 SPIO 특이성 조영제의 국소병변검출: Case review (Focal Lesion Detection of SPIO-specific agent Compared with Optimized Pulse Sequences in the Hepatic Metastases: Case Review)

  • 구은회
    • 대한디지털의료영상학회논문지
    • /
    • 제14권2호
    • /
    • pp.57-61
    • /
    • 2012
  • To compare the accuracy of breath-hold magnetic resonance imaging sequences to establish the most effective superparamagnetic iron oxide-enhanced sequence for detection of hepatic metastases. A total of 100 patients(50men and 50women, mean age: 60years) with liver disease(including malignant and benign liver lesions) were investigated at 3.0T machine (GE, General Electric Medical System, Excite HD) with 8Ch body coil. Pulse sequence for MR imaging decided to the FS-T2-FSE-RT(TR/TE/Thick./Freq./Phase=12857ms/100ms/7mm/512/384), MGRE(TR/TE/Thick./Freq./Phase=100ms/9.7ms/7mm/384/288), in-out of phase echo(TR/$TE_1$, $TE_2$/Thick./Freq./Phase=140ms/2.4, 5.8ms/7mm/352/300), Images obtained before the injection of SPIO. Six sequences were optimized for lesion detection: FS-T2-FSE-RT, multigradient recalled echo data image(MGRE), T2-weighted MGRE with an 9.7msec echo time. Images were reviewed independently by five blinded observers. The accuracy of each sequence was measured by using picture archiving communication system analysis. All results were correlated with findings at multidectator computed tomography examination. Differences between the mean results of the six observers were measured by using paired student t-test analysis. Postcontrast T2-weighted MGRE sequences were the most accurate and were significantly superior to postcontrast FS-T2-FSE-RT, T2-weighted MGRE, in-out of phase MR sequences(p < .05). For all lesions that were malignant or smaller than 1 cm, respectively, contrast to noise ratio of pre and postcontrast sequences were -1and -0.3 for T2-weighted FSE, 0.53 and 4.5 in-out of phase, 7, 7.08, 5.08, 3.32, 1.7, 1.16, 0.79, 0.68 for GRE with 2.9, 7.5, 12.1, 16.6, 21.2, 25.8, 30.4, 35.0 TE values. Breath-hold various TE precontrast sequences offer improvement in sensitivity compared with fixed multigradient recalled echo sequences alone.

  • PDF

Multi-Parametric Quantitative MRI for Measuring Myelin Loss in Hyperglycemia-Induced Hemichorea

  • Youn, Sung Won;Kwon, Oh Dae;Hwang, Moon Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권2호
    • /
    • pp.148-156
    • /
    • 2019
  • Hyperglycemia-induced hemichorea (HGHC) is a rare but characteristic hyperkinetic movement disorder involving limbs on one side of the body. In a 75-year-old woman with a left-sided HGHC, conventional brain MR imaging showed very subtle T1-hyperintensity and unique gadolinium enhancement in the basal ganglia contralateral to movements. Multi-parametric MRI was acquired using pulse sequence with quantification of relaxation times and proton density by multi-echo acquisition. Myelin map was reconstructed based on new tissue classification modeling. In this case report of multi-parametric MRI, quantitative measurement of myelin change related to HGHC in brain structures and its possible explanations are presented. This is the first study to demonstrate myelin loss related to hyperglycemic insult in multi-parametric quantitative MR imaging.

프로젝션 타입 고속 스핀 에코 영상 (Projection-type Fast Spin Echo Imaging)

  • 김휴정;김치영;김상묵;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • 제4권1호
    • /
    • pp.42-51
    • /
    • 2000
  • 목적: Projection-type Fast Spin Echo (PFSE) 영상 기법은 일반적인 Fast Spin Echo (FSE) 기법과 비교하여 환자의 움직임과 혈류에 강한 장점이 있는 반면. $T_2$ 대조도(contrast)를 조절하기가 어려운 단점이 있다. 본 연구에서는 PFSE의 대조도를 이론적으로 분석하였고 컴퓨터 모의실험을 통하여 다양한 effective echo time (TE) 을 갖는 일반적인 FSE와 비교, 분석하였다. 또한 인체 실험을 통하여 제안한 PFSE 영상기법으로 움직 임과 혈류에 강인한 $T_2$ 강조 영상을 얻을 수 있음을 보였다. 대상 및 방법: 본 연구에서는 1.OT 전신 MRI 시스템에서 새로운 k-space의 배치를 갖는 PFSE 펠스 시권스를 구현하여, PFSE와 FSE 방식의 $T_2$ 대조도를 컴퓨터 모의설험과 인체 실험을 통하여 비교, 분석하였다. 컴퓨터 모의실험에서는 서로 다른 $T_2$ 값을 갖는 팬텀을 구현하여 다양한 effective TE에 대한 FSE 영상과 PFSE 영상을 재구성하여 대조도를 비교하였다. 인체 설험에서는 multi-slice $T_2$ 강조 두부 영상을 PFSE와 FSE로 얻어 영상기법간의 $T_2$ 대조도를 비교하였다. 결과: 이론적인 분석에서 PFSE의 $T_2$ 대조도는 effective TE가 80-l00ms 정도의 FSE 영상과 등가하게 나타나 $T_2$ 강조 영상을 얻을 수 있을 것으로 판단되었다. 컴퓨터 모의실험에서 PFSE 재구성 영상은 effective TE가 96ms인 FSE 영상과 대조도가 비슷하게 나타났다. 인체 실험에 서도 PFSE 영상은 effective TE가 96ms인 FSE 영상과 비슷하게 나타났으며. PFSE 방법이 FSE 방법에 비하여 움직 엄과 혈류와 관련한 artifact에 강인함을 확인 할 수 었었다. 결론: PFSE 기법은 k-space의 극좌표계에서 서로 다른 각도를 갖는 여러 line틀을 다중 스핀 에코 기법으로 측정하는 방식이다. PFSE기법은 FSE와 비교하여 환자의 움직임과 혈류에 강한 장점이 있는 반면, $T_2$ 대조도를 조절하기가 어려운 단점이 있다. 본 연구에서는 PFSE 방식으로 FSE와 대등한 $T_2$ 대조도 ($T_2$ 강조 영상)를 얻을 수 있음을 이론과 컴퓨터 모의실험 밝히고, 인체 실험을 통하여 확인하였다.

  • PDF

다목적 야외경기장의 음향특성에 관한 연구 II -서울월드컵 경기장의 전기음향시스템고찰과 음향측정을 중심으로- (The Properties of Acoustic in Multi-purpose out-door Stadium II - a case study of seoul world cup stadium measurement -)

  • 김정중;손장열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.731-739
    • /
    • 2002
  • recently out door stadiums have been built as multi purpose stadium for athletic sports It hold but also various events and huge concerts. in the past, out-door stadium usually was built, but recently the out-door stadium which of the 50 % of roof covered by doom have been built increasingly. as the result, the sound obstacle is becoming very important. but a design of sound has become unplaned except some of the stadium, also rarely been built by sound-absorption material. as the result, the purpose of this study is investigating, analyzing the theory for plan of electric acoustic sound, a drawing of acoustic design and measurement a result value, comparison, evaluating a main sound factor with criteria of the Seoul City design. and reservation time, clearness, sound pressure level suitable for using purpose, so the necessary quantities will be added to financial budget of building acoustic design. and For verification, this contains acoustic analyser measurement and computer simulation and this study will find the solution of helping method.

  • PDF

Radiofrequency Coil Design for in vivo Sodium Magnetic Resonance Imaging of Mouse Kidney at 9.4T

  • Lim, Song-I;Woo, Chul-Woong;Kim, Sang-Tae;Choe, Bo-Young;Woo, Dong-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • 제22권1호
    • /
    • pp.65-70
    • /
    • 2018
  • The objective of this study was to describe a radiofrequency (RF) coil design for in vivo sodium magnetic resonance imaging (MRI) for use in small animals. Accumulating evidence has indicated the importance and potential of sodium imaging with improved magnet strength (> 7T), faster gradient, better hardware, multi-nucleus imaging methods, and optimal coil design for patient and animal studies. Thus, we developed a saddle-shaped sodium volume coil with a diameter/length of 30/30 mm. To evaluate the efficiency of this coil, bench-level measurement was performed. Unloaded Q value, loaded Q value, and ratio of these two values were estimated to be 352.8, 211.18, and 1.67, respectively. Thereafter, in vivo acquisition of sodium images was performed using normal mice (12 weeks old; n = 5) with a two-dimensional gradient echo sequence and minimized echo time to increase spatial resolution of images. Sodium signal-to-noise ratio in mouse kidneys (renal cortex, medulla, and pelvis) was measured. We successfully acquired sodium MR images of the mouse kidney with high spatial resolution (approximately 0.625 mm) through a combination of sodium-proton coils.

Remodeling of Infarcted Myocardium with Contrast-Enhanced Magnetic Resonance Imaging

  • 최병욱;최규옥;김영진;정남식;임세중
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.45-45
    • /
    • 2003
  • To evaluate remodeling of infarcted myocardium with contrast-enhanced MRI (co-MRI) at true end-diastole (ED) MRI was performed with a Gyroscan Intera (1.5 Tesla, Philips, Netherlands) in 13 patients with acute subendocardial myocardial infarction. The First exam was done 0-15 days (mean 5.2days) after symptom onset and the second exam 28-88days (mean 49 days) after the first exam. Ce-MRI encompassing the entire left ventricle was performed with a multi-shot, turbo-field-echo, breath-hold sequence and a non-selective, inversion prepulse 10 minutes after the intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg body weight. To allow the long TD, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time (TD) was adjusted to the RR-interval for true end-diastolic imaging. The other typical parameters were TR=5.4ms, TE=1.6ms, voxel size=1.37${\times}$1.37${\times}$10mm, k-space data segmented into 8 segments with 32 lines of segment per two cycles over 16 cardiac circles. The thickness of hyperenhanced myocardium and epicardially nonenhanced myocardium were followed.

  • PDF

Remodeling of Infarcted Myocardium with Contrast-Enhanced Magnetic Resonance Imaging

  • 최병욱;최규옥;김영진;정남식;임세중
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2003년도 제8차 학술대회 초록집
    • /
    • pp.92-92
    • /
    • 2003
  • To evaluate remodeling of infarcted myocardium with contrast-enhanced MRI (co-MRI) at true end-diastole (ED) MRI was performed with a Gyroscan Intera (1.5 Tesla, Philips, Netherlands) in 13 patients with acute subendocardial myocardial infarction. The First exam was done 0-15 days (mean 5.2days) after symptom onset and the second exam 28-88days (mean 49 days) after the first exam. Ce-MRI encompassing the entire left ventricle was peformed with a multi-shot, turbo-field-echo, breath-hold sequence and a non-selective, inversion prepulse 10 minutes after the intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg body weight. To allow the long TD, ECG synchronization should use two RR-intervals for one acquisition of a segment of k-space by setting the heart rate to half that of the true heart rate. Trigger delay time (TD) was adjusted to the RR-interval for true end-diastolic imaging. The other typical parameters were TR=5.4ms, TE=1.6ms, voxel size=1.37$\times$1.37$\times$10mm, k-space data segmented into 8 segments with 32 lines of segment per two cycles over 16 cardiac cycles. The thickness of hyperenhanced myocardium and epicardially nonenhanced myocardium were followed.

  • PDF

Fast MRI in Acute Ischemic Stroke: Applications of MRI Acceleration Techniques for MR-Based Comprehensive Stroke Imaging

  • You, Sung-Hye;Kim, Byungjun;Kim, Bo Kyu;Park, Sang Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권2호
    • /
    • pp.81-92
    • /
    • 2021
  • The role of neuroimaging in patients with acute ischemic stroke has been gradually increasing. The ultimate goal of stroke imaging is to make a streamlined imaging workflow for safe and efficient treatment based on optimized patient selection. In the era of multimodal comprehensive imaging in strokes, imaging based on computed tomography (CT) has been preferred for use in acute ischemic stroke, because, despite the unique strengths of magnetic resonance imaging (MRI), MRI has a longer scan duration than does CT-based imaging. However, recent improvements, such as multicoil technology and novel MRI acceleration techniques, including parallel imaging, simultaneous multi-section imaging, and compressed sensing, highlight the potential of comprehensive MR-based imaging for strokes. In this review, we discuss the role of stroke imaging in acute ischemic stroke management, as well as the strengths and limitations of MR-based imaging. Given these concepts, we review the current MR acceleration techniques that could be applied to stroke imaging and provide an overview of the previous research on each essential sequence: diffusion-weighted imaging, gradient-echo, fluid-attenuated inversion recovery, contrast-enhanced MR angiography, and MR perfusion imaging.