• 제목/요약/키워드: Multi-domain FRF-based substructuring method

검색결과 5건 처리시간 0.017초

다중 전달함수합성법을 이용한 승용차 엔진마운트 시스템의 최적설계 (Optimization of an Engine Mount System of passenger Car using the Multi-domain FRF-based Substructuring Method)

  • 이두호;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.399-404
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft the FRF-based substructuring method is one of the most powerful tools. In this paper, an optimization procedure far the engine mount system of passenger car has been presented using the design sensitivity analysis based on the multi-domain FRF-based substructuring formulation. The proposed method is applied to an optimization problem of the engine mount system, of which objective is to minimize the interior sound over the concerned rpm range. The design variables selected are the stiffnesses of the engine mounts and bushes. Plugging the gradient information calculated by the proposed method into nonlinear optimization software, we can obtain the optimal stiffnesses of the engine mounts and bushings through design iterations. The optimized interior noise in the passenger car shows that the proposed method is very useful in the realistic situation.

  • PDF

다중 전달함수합성 법을 이용한 엔진마운트 시스템의 설계민감도 해석 (Design Sensitivity Analysis of an Engine Mount System using the Multi-Domain FRF-based Substructuring Method)

  • 이두호;황우석
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.237-244
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft, the FRF-based substructuring (FBS) method is one of the most powerful tools. In this paper, a general procedure for the parametric sensitivity analysis of vibro-acoustic problems has been presented using the multi-domain FRF-based substructuring formulation. For an acoustic-structural system sub-structured by multiple domains, the substructuring formulation gives the reaction farces on the interface boundaries. The design sensitivity formula is obtained from the direct differentiation of the reaction force expression with respect to the design vector. As a practical application, the proposed design sensitivity formula is applied to an engine mount system of passenger car. An objective of the problem is to identify the most effective engine mounts and bushes in minimizing the interior noise over the concerned rpm range. The comparison of the sensitivity results with those of the finite difference method shows excellent agreement. In addition, stiffness modifications of the mounts and bushes identified through the design sensitivity analysis lead to a successful decrease of the interior noise. This results show usefulness of the present method very well.

전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method)

  • 이두호;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF

전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 추정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method)

  • 황우석;이두호
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.536-545
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, the stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.

다중 전달함수합성법을 이용한 진동시스템의 결합부 특성 값 동정 (Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method)

  • 이두호;황우석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.501-509
    • /
    • 2003
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate even when applied to realistic problems.

  • PDF