• Title/Summary/Keyword: Multi-dimensional transform

Search Result 66, Processing Time 0.023 seconds

Design of video encoder using Multi-dimensional DCT (다차원 DCT를 이용한 비디오 부호화기 설계)

  • Jeon, S.Y.;Choi, W.J.;Oh, S.J.;Jeong, S.Y.;Choi, J.S.;Moon, K.A.;Hong, J.W.;Ahn, C.B.
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.732-743
    • /
    • 2008
  • In H.264/AVC, 4$\times$4 block transform is used for intra and inter prediction instead of 8$\times$8 block transform. Using small block size coding, H.264/AVC obtains high temporal prediction efficiency, however, it has limitation in utilizing spatial redundancy. Motivated on these points, we propose a multi-dimensional transform which achieves both the accuracy of temporal prediction as well as effective use of spatial redundancy. From preliminary experiments, the proposed multi-dimensional transform achieves higher energy compaction than 2-D DCT used in H.264. We designed an integer-based transform and quantization coder for multi-dimensional coder. Moreover, several additional methods for multi-dimensional coder are proposed, which are cube forming, scan order, mode decision and updating parameters. The Context-based Adaptive Variable-Length Coding (CAVLC) used in H.264 was employed for the entropy coder. Simulation results show that the performance of the multi-dimensional codec appears similar to that of H.264 in lower bit rates although the rate-distortion curves of the multi-dimensional DCT measured by entropy and the number of non-zero coefficients show remarkably higher performance than those of H.264/AVC. This implies that more efficient entropy coder optimized to the statistics of multi-dimensional DCT coefficients and rate-distortion operation are needed to take full advantage of the multi-dimensional DCT. There remains many issues and future works about multi-dimensional coder to improve coding efficiency over H.264/AVC.

Analysis of 2-Dimensional Object Recognition Using discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 2차원 물체 인식에 관한 연구)

  • Park, Kwang-Ho;Kim, Chang-Gu;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.194-202
    • /
    • 1999
  • A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.

  • PDF

Robust Feature Extraction and Tracking Algorithm Using 2-dimensional Wavelet Transform (2차원 웨이브릿 변환을 이용한 강건한 특징점 추출 및 추적 알고리즘)

  • Jang, Sung-Kun;Suk, Jung-Youp
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.405-406
    • /
    • 2007
  • In this paper, we propose feature extraction and tracking algorithm using multi resolution in 2-dimensional wavelet domain. Feature extraction selects feature points using 2-level wavelet transform in interested region. Feature tracking estimates displacement between current frame and next frame based on feature point which is selected feature extraction algorithm. Experimental results show that the proposed algorithm confirmed a better performance than the existing other algorithms.

  • PDF

A Novel Method for Virtual Machine Placement Based on Euclidean Distance

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2914-2935
    • /
    • 2016
  • With the increasing popularization of cloud computing, how to reduce physical energy consumption and increase resource utilization while maintaining system performance has become a research hotspot of virtual machine deployment in cloud platform. Although some related researches have been reported to solve this problem, most of them used the traditional heuristic algorithm based on greedy algorithm and only considered effect of single-dimensional resource (CPU or Memory) on energy consumption. With considerations to multi-dimensional resource utilization, this paper analyzed impact of multi-dimensional resources on energy consumption of cloud computation. A multi-dimensional resource constraint that could maintain normal system operation was proposed. Later, a novel virtual machine deployment method (NVMDM) based on improved particle swarm optimization (IPSO) and Euclidean distance was put forward. It deals with problems like how to generate the initial particle swarm through the improved first-fit algorithm based on resource constraint (IFFABRC), how to define measure standard of credibility of individual and global optimal solutions of particles by combining with Bayesian transform, and how to define fitness function of particle swarm according to the multi-dimensional resource constraint relationship. The proposed NVMDM was proved superior to existing heuristic algorithm in developing performances of physical machines. It could improve utilization of CPU, memory, disk and bandwidth effectively and control task execution time of users within the range of resource constraint.

Physical Database Design for DFT-Based Multidimensional Indexes in Time-Series Databases (시계열 데이터베이스에서 DFT-기반 다차원 인덱스를 위한 물리적 데이터베이스 설계)

  • Kim, Sang-Wook;Kim, Jin-Ho;Han, Byung-ll
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.11
    • /
    • pp.1505-1514
    • /
    • 2004
  • Sequence matching in time-series databases is an operation that finds the data sequences whose changing patterns are similar to that of a query sequence. Typically, sequence matching hires a multi-dimensional index for its efficient processing. In order to alleviate the dimensionality curse problem of the multi-dimensional index in high-dimensional cases, the previous methods for sequence matching apply the Discrete Fourier Transform(DFT) to data sequences, and take only the first two or three DFT coefficients as organizing attributes of the multi-dimensional index. This paper first points out the problems in such simple methods taking the firs two or three coefficients, and proposes a novel solution to construct the optimal multi -dimensional index. The proposed method analyzes the characteristics of a target database, and identifies the organizing attributes having the best discrimination power based on the analysis. It also determines the optimal number of organizing attributes for efficient sequence matching by using a cost model. To show the effectiveness of the proposed method, we perform a series of experiments. The results show that the Proposed method outperforms the previous ones significantly.

  • PDF

Multi-aspect Based Active Sonar Target Classification (다중 자세각 기반의 능동소나 표적 식별)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1775-1781
    • /
    • 2016
  • Generally, in the underwater target recognition, feature vectors are extracted from the target signal utilizing spatial information according to target shape/material characteristics. In addition, various signal processing techniques have been studied to extract feature vectors which are less sensitive to the location of the receiver. In this paper, we synthesized active echo signals using 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to echo signals to extract signal features. For the performance verification, classification experiments were performed using backpropagation and probabilistic neural network classifiers based on single aspect and multi-aspect method. As a result, we obtained a better recognition result using proposed feature extraction and multi-aspect based method.

Design and Implementation of multi-dimensional BI System for Information Integration and Analysis in University Administration (대학 행정의 정보통합 및 통계분석을 위한 다차원 BI 시스템의 설계 및 구현)

  • Ji, Keung-yeup;Yang, Hee Sung;Kwon, Youngmi
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.939-947
    • /
    • 2016
  • As the number of legacy database systems and the size of data to manipulate have been vastly increased, it has become more difficult and complex to analyze characteristics of data. To improve the efficiency of data analysis and help administrators to make decisions in business life, BI(Business Intelligence) system is used. To construct data warehouse and cube from legacy database systems makes it easy and fast to transform raw data into integrated and categorized meaningful information. In this paper, we built a BI system for an University administration. Several source system databases were integrated to data warehouse to build data cubes. The implemented BI system shows much faster data analysis and reporting ability than the manipulation in legacy systems. It is especially efficient in multi dimensional data analysis, nonetheless in single dimensional analysis.

A Fractal Based Approach for Multi Level Abstraction of Three Dimensional Terrain (프랙탈 기법을 이용한 3차원 지형의 다중 추상화)

  • Park, Mee-Jeong;Lee, Jeong-Jae
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.1 s.26
    • /
    • pp.9-15
    • /
    • 2005
  • Preservation of geometrical context of terrains in a digitized format is useful in handling and making modification to the data. Digitization of three-dimensional terrain still proves a great challenge due to heavy load of context required to retain details of topological and geometrical information. Methods of simplification, restoration and multi-level terrain generation are often employed to transform the original data into a compressed digital format. However, reduction of the stored data size comes at an expense of loss of details in the original data set. This article reports on an alternative scheme for simplification and restoration of terrain data. The algorithm utilizes the fact that the terrain formation and patterns can be predicted and modeled through the fractal algorithm. This method was used to generate multi-level terrain model based on NGIS digital maps with preserving geometrical context of terrains.

A Design of Two-Dimensional Wavelet Transformer Using SDRAM (SDRAM을 이용한 이차원 웨이블렛 변환기의 설계)

  • 이선영;홍석일;조경순
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.351-355
    • /
    • 1999
  • The amount of data stored, processed and transmitted in the multi-media systems has been growing very fast, especially for the image data. For example, it takes 0.75Mbytes to store 512 12 pixels of 24-bit color image. A video signal with 30 frames per second will require 22.5Mbytes of storage space. To solve this problem, we need a good image compression technique. Recently, many researches on the image compression technique based on the wavelet transform are being pursued to overcome the problems of traditional JPEG. This paper describes the architecture and design of two-dimensional wavelet transform circuit. To keep the sire of the circuit small, we tried to minimize the internal storage space by using external SDRAM. This circuit was designed in Verilog-HDL, synthesized using Design Compiler and verified using Verilog-XL.

  • PDF

A New Three-dimensional Integrated Multi-index Method for CBIR System

  • Zhang, Mingzhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.993-1014
    • /
    • 2021
  • This paper proposes a new image retrieval method called the 3D integrated multi-index to fuse SIFT (Scale Invariant Feature Transform) visual words with other features at the indexing level. The advantage of the 3D integrated multi-index is that it can produce finer subdivisions in the search space. Compared with the inverted indices of medium-sized codebook, the proposed method increases time slightly in preprocessing and querying. Particularly, the SIFT, contour and colour features are fused into the integrated multi-index, and the joint cooperation of complementary features significantly reduces the impact of false positive matches, so that effective image retrieval can be achieved. Extensive experiments on five benchmark datasets show that the 3D integrated multi-index significantly improves the retrieval accuracy. While compared with other methods, it requires an acceptable memory usage and query time. Importantly, we show that the 3D integrated multi-index is well complementary to many prior techniques, which make our method compared favorably with the state-of-the-arts.