• Title/Summary/Keyword: Multi-dimensional Approach

Search Result 329, Processing Time 0.022 seconds

Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In the most of previous studies, researchers have restricted their own studies to consider the effect of single walled carbon nanotubes as a reinforcement on the vibrational behavior of structures. In the present work, free vibration characteristics of functionally graded annular plates reinforced by multi-walled carbon nanotubes resting on Pasternak foundation are presented. The response of the elastic medium is formulated by the Winkler/Pasternak model. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of the multi-walled carbon nanotube/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the multi-walled carbon nanotubes wt% range considered. The 2-D generalized differential quadrature method as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the plates are investigated. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of annular plates.

An Improved Algorithm for Building Multi-dimensional Histograms with Overlapped Buckets (중첩된 버킷을 사용하는 다차원 히스토그램에 대한 개선된 알고리즘)

  • 문진영;심규석
    • Journal of KIISE:Databases
    • /
    • v.30 no.3
    • /
    • pp.336-349
    • /
    • 2003
  • Histograms have been getting a lot of attention recently. Histograms are commonly utilized in commercial database systems to capture attribute value distributions for query optimization Recently, in the advent of researches on approximate query answering and stream data, the interests in histograms are widely being spread. The simplest approach assumes that the attributes in relational tables are independent by AVI(Attribute Value Independence) assumption. However, this assumption is not generally valid for real-life datasets. To alleviate the problem of approximation on multi-dimensional data with multiple one-dimensional histograms, several techniques such as wavelet, random sampling and multi-dimensional histograms are proposed. Among them, GENHIST is a multi-dimensional histogram that is designed to approximate the data distribution with real attributes. It uses overlapping buckets that allow more efficient approximation on the data distribution. In this paper, we propose a scheme, OPT that can determine the optimal frequencies of overlapped buckets that minimize the SSE(Sum Squared Error). A histogram with overlapping buckets is first generated by GENHIST and OPT can improve the histogram by calculating the optimal frequency for each bucket. Our experimental result confirms that our technique can improve the accuracy of histograms generated by GENHIST significantly.

Fabrication of 3D Metallic Molds for Multi-replication of Microstructures (극미세 3 차원 형상복제를 위한 금속몰드 제작에 관한 연구)

  • Bae, Kong-Myung;Ko, Jong-Soo;Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.119-125
    • /
    • 2009
  • Fabrication of a three-dimensional (3D) metallic mold for multi-production of a microstructure was studied to settle the problem of long processing time in 3D microfabrication. To date, complicated 3D microstructures including 3D photonic crystals, 3D microlens array, 3D filter for microfludics, and something else were created successfully using the two-photon polymerization (TPP) which was considered as paving the way to fabricate a real 3D shape in nano/microscale. However, for those fabrications, much processing time and efforts were inevitably required. To solve this issue, a simple and effective way was proposed in this paper; 3D master patterns were prepared using TPP, and then counter-shaped Ni molds were fabricated by electroforming process. By using these molds, 3D microstructures can be reproduced with short-processing time and low-effort comparing to the conventional approach, TPP We report some parameters to fabricate a metallic mold precisely.

Hydroelastic Behavior for a Very Lagre Floating Structure of Poontoon-Type in Multi-Directional Irregular Waves (다방향불규칙파중의 Pontoon형의 초대형부유식해양구조물에 대한 유탄성응답 특성)

  • Kim, Chel-Hyun;Jo, Hyo-Jae;Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.83-90
    • /
    • 2006
  • Recently, as the technology of utilization for the ocean space is being advanced, floating structures are asked for being mare and mare huge-scale. A very large floating structure(VLFS) is considered as a flexible structure, because of a quite large length-to-breadth ratio and its geometrical flexibility. The main object of this study is to develop an accurate and convenient method on the hydroelastic response analysis of very large offshore structures on the real sea states. The numerical approach for the hydorelastic responses is based on the combination of the three dimensional source distribution methods, the dynamic response analysis method and the spectral analysis method. A model is considered as many rigid bodies connected elastic beam elements. The calculated results shaw good agreement with the experimental and calculated ones by Ohta.

3D reconstruction of two-phase random heterogeneous material from 2D sections: An approach via genetic algorithms

  • Pizzocri, D.;Genoni, R.;Antonello, F.;Barani, T.;Cappia, F.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2968-2976
    • /
    • 2021
  • This paper introduces a method to reconstruct the three-dimensional (3D) microstructure of two-phase materials, e.g., porous materials such as highly irradiated nuclear fuel, from two-dimensional (2D) sections via a multi-objective optimization genetic algorithm. The optimization is based on the comparison between the reference and reconstructed 2D sections on specific target properties, i.e., 2D pore number, and mean value and standard deviation of the pore-size distribution. This represents a multi-objective fitness function subject to weaker hypotheses compared to state-of-the-art methods based on n-points correlations, allowing for a broader range of application. The effectiveness of the proposed method is demonstrated on synthetic data and compared with state-of-the-art methods adopting a fitness based on 2D correlations. The method here developed can be used as a cost-effective tool to reconstruct the pore structure in highly irradiated materials using 2D experimental data.

A Sociological Approach to Sustainable Development (지속가능한 발전의 사회학적 고찰)

  • Jeong, Dai-Yeun
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.1
    • /
    • pp.55-72
    • /
    • 2003
  • The term sustainable development is being used widely since WCED suggested it in 1987. This paper aims at catching up its sociological implications. For doing this, the paper examined some major existing researches on sustainable development. It was found that sustainable development has been defined as an economic development with the preservation of nature as an environment of human life. In this sense, the existing concept of sustainable development is an economic perspective. Sustainable development as an economic perspective is faced with some limitations and/or problems. They are summarized as follows. The human-made environment is excluded from the concept of sustainable development. Its ideology is anthroponcentric in that the sustainability of nature is a necessary condition for economic development. The objective reference which can measure whether the current state of nature is sustainable or not is not proposed. Consequently, sustainable development results in merely a survivability of economy, a new form of economic utility and/or a successful economy. In terms of sociological perspective, economy and nature can not be sustainable without other social factors being sustainable, because all social factors including economy and nature exist in a causal mechanism. This means that sustainable development should be approached from a multi-dimensional perspective. The multi-dimensional approach can be a framework of sustainable development in terms of whole society, then can be termed sustainable society which implies not a sustainable development, but a societal development. The factors which should be included in the sustainable society are, at least, nature, economy, population as an aggregate, mode of living existence of people as a cultural actor, technology, and social structure.

Analysis of the Wave Exciting Forces and Steady Drift Forces on a Tension Leg Platform in Multi-directional Irregular Waves (Frequency Domain Analysis) (다방향 불규칙파중의 인장계류식 해양구조물에 작용하는 파강제력 및 정상표류력 해석(주파수영역 해석))

  • 이창호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2001
  • A numerical procedure is described for simultaneously predicting the wave exciting forces and drift forces on a Tension Leg Platform (TLP) in multi-directional irregular waves. The numerical approach is based on a three dimensional source distribution method to the wave exciting forces, a far-field method to the steady drift forces and a spectral analysis technique of directional waves. The spectral description for the linear system of TLP in the frequency domain is sufficient to completely define the wave exciting forces and steady drift forces. This is because both the wave inputs and the outputs are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. Numerical results of steady drift forces are compared with the experimental and numerical ones, which are obtained in the literature. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

Non-linear aero-elastic response of a multi-layer TPS

  • Pasolini, P.;Dowell, E.H.;Rosa, S. De;Franco, F.;Savino, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.449-465
    • /
    • 2017
  • The aim of the present work is to present a computational study of the non-linear aero-elastic behavior of a multi-layered Thermal Protection System (TPS). The severity of atmospheric re-entry conditions is due to the combination of high temperatures, high pressures and high velocities, and thus the aero-elastic behavior of flexible structures can be difficult to assess. In order to validate the specific computational model and the overall strategy for structural and aerodynamics analyses of flexible structures, the simplified TPS sample tested in the 8' High Temperature Tunnel (HTT) at NASA LaRC has been selected as a baseline for the validation of the present work. The von $K{\acute{a}}rm{\acute{a}}n^{\prime}s$ three dimensional large deflection theory for the structure and a hybrid Raleigh-Ritz-Galerkin approach, combined with the first order Piston Theory to describe the aerodynamic flow, have been used to derive the equations of motion. The paper shows that a good description of the physical behavior of the fabric is possible with the proposed approach. The model is further applied to investigate structural and aero-elastic influence of the number of the layers and the stitching pattern.

3D Object Extraction Algorithm Based on Hierarchical Approach Using Reduced Windowed Fourier Phase (간소화된 윈도우 푸리에 위상을 이용한 계층적 접근기반의 3차원 객체 추출 기법)

  • Min, Gak;Han, Kyu-Phil;Lee, Ky-Soo;Ha, Yeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.779-785
    • /
    • 2002
  • This paper presents a phase-based stereo matching algorithm in order to efficiently extract 3-dimensional objects from two 2D images. Conventional phase-based methods, especially using windowed Fourier phases, inherit good properties in the case of hierarchical approaches, because they basically use a multi-resolution phase map. On the contrary, their computational costs are very heavy. Therefore, a fast hierarchical approach, using multi-resolution phase-based strategy and reducing the redundancy of phase calculations, is proposed in this pare. In addition, a structural matching algorithm on the phase domain is adopted to improve the matching quality. In experimental results, it is shown that the computation loads are considerably reduced about 8 times and stable outputs are obtained.