• Title/Summary/Keyword: Multi-criteria optimization

Search Result 121, Processing Time 0.031 seconds

Optimization for Relay-Assisted Broadband Power Line Communication Systems with QoS Requirements Under Time-varying Channel Conditions

  • Wu, Xiaolin;Zhu, Bin;Wang, Yang;Rong, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4865-4886
    • /
    • 2017
  • The user experience of practical indoor power line communication (PLC) applications is greatly affected by the system quality-of-service (QoS) criteria. With a general broadcast-and-multi-access (BMA) relay scheme, in this work we investigate the joint source and relay power optimization of the amplify-and-forward (AF) relay systems used under indoor broad-band PLC environments. To achieve both time diversity and spatial diversity from the relay-involved PLC channel, which is time-varying in nature, the source node has been configured to transmit an identical message twice in the first and second signalling phase, respectively. The QoS constrained power allocation problem is not convex, which makes the global optimal solution is computationally intractable. To solve this problem, an alternating optimization (AO) method has been adopted and decomposes this problem into three convex/quasi-convex sub-problems. Simulation results show the fast convergence and short delay of the proposed algorithm under realistic relay-involved PLC channels. Compared with the two-hop and broadcast-and-forward (BF) relay systems, the proposed general relay system meets the same QoS requirement with less network power assumption.

Multi-response optimization for milling AISI 304 Stainless steel using GRA and DFA

  • Naresh, N.;Rajasekhar, K.
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.67-80
    • /
    • 2016
  • The objective of the present work is to optimize process parameters namely, cutting speed, feed rate, and depth of cut in milling of AISI 304 stainless steel. In this work, experiments were carried out as per the Taguchi experimental design and an $L_{27}$ orthogonal array was used to study the influence of various combinations of process parameters on surface roughness (Ra) and material removal rate (MRR). As a dynamic approach, the multiple response optimization was carried out using grey relational analysis (GRA) and desirability function analysis (DFA) for simultaneous evaluation. These two methods are considered in optimization, as both are multiple criteria evaluation and not much complicated. The optimum process parameters found to be cutting speed at 63 m/min, feed rate at 600 mm/min, and depth of cut at 0.8 mm. Analysis of variance (ANOVA) was employed to classify the significant parameters affecting the responses. The results indicate that depth of cut is the most significant parameter affecting multiple response characteristics of GFRP composites followed by feed rate and cutting speed. The experimental results for the optimal setting show that there is considerable improvement in the process.

Numerical investigation and optimization of the solar chimney performances for natural ventilation using RSM

  • Mohamed Walid Azizi;Moumtez Bensouici;Fatima Zohra Bensouici
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.521-533
    • /
    • 2023
  • In the present study, the finite volume method is applied for the thermal performance prediction of the natural ventilation system using vertical solar chimney whereas, design parameters are optimized through the response surface methodology (RSM). The computational simulations are performed for various parameters of the solar chimney such as absorber temperature (40≤Tabs≤70℃), inlet temperature (20≤T0≤30℃), inlet height of (0.1≤h≤0.2 m) and chimney width (0.1≤d≤0.2 m). Analysis of variance (ANOVA) was carried out to identify the design parameters that influence the average Nusselt number (Nu) and mass flow rate (ṁ). Then, quadratic polynomial regression models were developed to predict of all the response parameters. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are Nu=25.67 and ṁ=24.68 kg/h·m, corresponding to design parameters h=0.18 m, d=0.2 m, Tabs=46.81℃ and T0=20℃. The optimal ventilation flow rate is enhanced by about 96.65% compared to the minimum ventilation rate, while solar energy consumption is reduced by 49.54% compared to the maximum ventilation rate.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Lightweight Self-consolidating Concrete with Expanded Shale Aggregates: Modelling and Optimization

  • Lotfy, Abdurrahmaan;Hossain, Khandaker M.A.;Lachemi, Mohamed
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.185-206
    • /
    • 2015
  • This paper presents statistical models developed to study the influence of key mix design parameters on the properties of lightweight self-consolidating concrete (LWSCC) with expanded shale (ESH) aggregates. Twenty LWSCC mixtures are designed and tested, where responses (properties) are evaluated to analyze influence of mix design parameters and develop the models. Such responses included slump flow diameter, V-funnel flow time, J-ring flow diameter, J-ring height difference, L-box ratio, filling capacity, sieve segregation, unit weight and compressive strength. The developed models are valid for mixes with 0.30-0.40 water-to-binder ratio, high range water reducing admixture of 0.3-1.2 % (by total content of binder) and total binder content of $410-550kg/m^3$. The models are able to identify the influential mix design parameters and their interactions which can be useful to reduce the test protocol needed for proportioning of LWSCCs. Three industrial class ESH-LWSCC mixtures are developed using statistical models and their performance is validated through test results with good agreement. The developed ESH-LWSCC mixtures are able to satisfy the European EFNARC criteria for self-consolidating concrete.

An Optimization Model for Assignment of Freight Trains to Transshipment Tracks and Allocation of Containers to Freight Trains (화물열차 작업선배정 및 열차조성을 위한 수리모형 및 해법)

  • Kim, Kyung-Min;Kim, Dong-Hee;Park, Bum-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.535-540
    • /
    • 2010
  • We present an optimization model for how to assign the freight trains to transshipment tracks and allocate the containers to the freight trains in a rail container terminal. We formulate this problem as a multi-criteria integer programming to minimize the makespan of job schedule and simultaneously to maximize the loading throughput, i.e. the number of containers to be disposed per day. We also apply our model to the instance obtained from the real-world data of the Uiwang Inner Container Depot. From the experiments, we can see an improvement of approximately 6% in makespan, which means that our model can contribute to the improvement of the disposal capacity of containers without additional expansion of facilities.

Optimal Force Distribution for Compliance Control of Multi-legged Walking Robots (다각 보행로보트의 순응 제어를 위한 힘의 최적 분배)

  • Ra, In-Hwan;Yang, Won-Young;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.874-876
    • /
    • 1995
  • Force and compliance control has been used in the control of legged walking vehicles to achieve superior terrain adaptability on rough terrains. The compliance control requires distribution of the vehicle load over the supporting legs. However, the constraint equations for ground reaction forces of supporting legs are generally underdetermined, allowing an infinite number of solutions. Thus, it is possible to apply an optimization criteria in solving the force setpoint problem. It has been observed that the previous force setpoint optimization methods sometimes cause a system stability problem and/or the load distribution among supporting legs is not well balanced due to a memory effect on the solution trajectory, This paper presents an iterative force setpoint method to solve this problem using an interpolation technique. By simulation it was shown that an excessive load unbalance among supporting legs and the memory effect in the force trajectory are alleviated much with the proposed method.

  • PDF

Resource-constrained Scheduling at Different Project Sizes

  • Lazari, Vasiliki;Chassiakos, Athanasios;Karatzas, Stylianos
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.196-203
    • /
    • 2022
  • The resource constrained scheduling problem (RCSP) constitutes one of the most challenging problems in Project Management, as it combines multiple parameters, contradicting objectives (project completion within certain deadlines, resource allocation within resource availability margins and with reduced fluctuations), strict constraints (precedence constraints between activities), while its complexity grows with the increase in the number of activities being executed. Due to the large solution space size, this work investigates the application of Genetic Algorithms to approximate the optimal resource alolocation and obtain optimal trade-offs between different project goals. This analysis uses the cost of exceeding the daily resource availability, the cost from the day-by-day resource movement in and out of the site and the cost for using resources day-by-day, to form the objective cost function. The model is applied in different case studies: 1 project consisting of 10 activities, 4 repetitive projects consisting of 40 activities in total and 16 repetitive projects consisting of 160 activities in total, in order to evaluate the effectiveness of the algorithm in different-size solution spaces and under alternative optimization criteria by examining the quality of the solution and the required computational time. The case studies 2 & 3 have been developed by building upon the recurrence of the unit/sub-project (10 activities), meaning that the initial problem is multiplied four and sixteen times respectively. The evaluation results indicate that the proposed model can efficiently provide reliable solutions with respect to the individual goals assigned in every case study regardless of the project scale.

  • PDF