• Title/Summary/Keyword: Multi-criteria optimization

Search Result 121, Processing Time 0.019 seconds

A Study on the Generation Expansion Planning System Under the Cost Based Pool (CBP 시장 체제하에서의 전력수급계획 수립 체계에 관한 연구)

  • Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.918-922
    • /
    • 2009
  • The power expansion planning is large and capital intensive capacity planning. In the past, the expansion planning was established with the proper supply reliability in order to minimize social cost. However, the planning cannot use cost minimizing objective function in the power markets with many market participants. This paper proposed the power expansion planning process in the power markets. This system is composed of Regulator and GENCO's model. Regulator model used multi-criteria decision making rule. GENCO model is very complex problem. Thus, this system transacted the part by several scenario assuming GENCO model.

Bending and shear stiffness optimization for rigid and braced multi-story steel frames

  • Gantes, C.J.;Vayas, I.;Spiliopoulos, A.;Pouangare, C.C.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.377-392
    • /
    • 2001
  • The response of multi-story building structures to lateral loads, mainly due to earthquake and wind, is investigated for preliminary design purposes. Emphasis is placed on structural systems consisting of rigid and braced steel frames. An attempt to gain a qualitative understanding of the influence of bending and shear stiffness distribution on the deformations of such structures is made. This is achieved by modeling the structure with a stiffness equivalent Timoshenko beam. It is observed that the conventional stiffness distribution, dictated by strength constraints, may not be the best to satisfy deflection criteria. This is particularly the case for slender structural systems with prevailing bending deformations, such as flexible braced frames. This suggests that a new approach to the design of such frames may be appropriate when serviceability governs. A pertinent strategy for preliminary design purposes is proposed.

Optimization of a composite beam for high-speed railroads

  • Poliakov, Vladimir Y.;Saurin, Vasyli V.
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.493-501
    • /
    • 2020
  • The paper describes an optimization method based on the mathematical model of interaction within multibody 'bridge-track-cars" dynamic system. The interaction is connected with considerable dynamic phenomena influenced by high traffic speed (up to 400 km/h) on high-speed railroads. The trend analysis of a structure is necessary to determine the direction and resource of optimizing the system. Thus, scientific methods of decision-making process are necessary. The process requires a great amount of information analysis dealing with behavior and changes of the "bridge-track-cars system" that consists of mechanisms and structures, including transitions. The paper shows the algorithm of multi-criteria optimization that can essentially reduce weight of a bridge superstructure using big data analysis. This reduction is carried out in accordance with the constraints that have to be satisfied in any case. Optimization of real steel-concrete beam is exemplified. It demonstrates possibility of measures that are offered by the algorithm.

Conceptual Design Based on Scale Laws and Algorithms Sub-critical Transmutation Reactors

  • Lee, Kwang-Gu;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.475-480
    • /
    • 1997
  • In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making fur both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors.

  • PDF

Optimal Design of a Multi-Layered Plate Structure Under High-Velocity Impact (다중판재의 고속충돌에 관한 최적설계)

  • Yoon, Deok-Hyun;Park, Myung-Soo;Yoo, Jeong-Hoon;Chung, Dong-Teak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1793-1799
    • /
    • 2003
  • An optimal design of a multi-layered plate structure to endure high-velocity impact has been suggested by using size optimization after numerical simulations. The NET2D, a Lagrangian explicit time-integration finite element code for analyzing high-velocity impact, was used to find the parameters for the optimization. Three different materials such as mild steel, aluminum for a multi-layered plate structure and die steel for the pellet, were assumed. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, Johnson-Cook model and Phenomenological Material Model were used as constitutive models for the simulation. It was carried out with several different gaps and thickness of layers to figure out the trend in terms of those parameters' changes under the constraint, which is against complete penetration. Also, the measuring domain has been shrunk with several elements to reduce the analyzing time. The response surface method based on the design of experiments was used as optimization algorithms. The optimized thickness of each layer in which perforation does not occur has been obtained at a constant velocity and a designated total thickness. The result is quite acceptable satisfying both the minimized deformation energy and the weight criteria. Furthermore, a conceptual idea for topology optimization was suggested for the future work.

Drone Force Deployment Optimization Algorithm For Efficient Military Drone Operations (효율적 군용 드론 작전 운영을 위한 Drone Force Deployment Optimization 알고리즘)

  • Song, Ju-Young;Jang, Hyeon-Deok;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.211-219
    • /
    • 2020
  • One of the major advancements of the Fourth Industrial Revolution is the use of Internet of Drones (IoD), which combines the Internet of Things (IoT) and drone technology. IoD technology is especially important for efficiently and economically operating C4ISR operations in actual battlefields supporting various combat situations. The purpose of this study is to solve the problems of limited battery capacity of drones and lack of budgeting criteria for military drone transcription, introduction, and operation. If the mission area is defined and corresponding multi-drone hovering check points and mission completion time limits are set, then an energy and time co-optimized scheduling and operation control scheme is needed. Because such a scheme does not exist, in this paper, a Drone Force Deployment Optimization (DFDO) scheme is proposed to help schedule multi-drone operation scheduling and networked based remote multi-drone control.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Correlation Analysis between Wheelchair Multi-layer Headrest Foam Properties and Injury Index (Wheelchair Multi-layer headrest foam 특성과 상해지수간 상관관계 분석)

  • Sungwook Cho;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.253-258
    • /
    • 2023
  • Although the development of transportation means has realized the right to mobility for the disabled who have difficulty in moving, it can be said that the improvement of the safety of passengers with disabilities that can occur in a car accident is lower than that of ordinary passenger seats. In particular, in the case of a rear-end collision that can occur suddenly, it is a reality that disabled passengers are vulnerable to head and neck injuries. Therefore, in this study, a multi-layer headrest foam that divides the headrest into three parts in the coronal plane was proposed to improve the head and neck injury index of disabled passengers in the vehicle in the event of a rear-end collision of a wheelchair transport vehicle. A range of stress scale factors was selected to give various compressive characteristics of the foam through low-speed rear-end collision analysis through a simple model, and GA optimization was performed by specifying the range as a parameter. Through the optimization result, the phase relationship between HIC and NIC was analyzed according to the compression characteristics of the layers. HIC responded most sensitively to the compression characteristics of the front layer and NIC responded to the compression characteristics of the mid layer, and the compression characteristics of the rear layer showed the lowest. A normal headrest and an optimized multi-layer headrest were placed in the validation model to analyze the low-speed rear-end collision sled test, and HIC and NIC were derived lower in the multi-layer headrest than in the general headrest. The compression behavior of the multi-layer headrest was also clearly shown, and it was verified that the multi-layer headrest was effective in improving the injury index of the head and neck compared to the general headrest.

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu;Jianfeng Li;Hamidreza Aghajanirefah;Mohammad Khishe;Abbas Khishe;Arsalan Mahmoodzadeh;Banar Fareed Ibrahim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.147-165
    • /
    • 2023
  • The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.

Multiple criteria decision making method for selecting of sealing element for earth dams considering long and short terms goals

  • Rashidi, Babak;Shirangi, Ehsan;Baymaninezhad, Matin
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.69-74
    • /
    • 2018
  • Nowadays, using math logic in great civil projects is considered by the clients to achieve the goals of project including quality optimization, costs, avoiding individual, emotional and political decision making, long-term and short-term goals and they are the main requirements of each project and should be considered by the decision makers to avoid the illogical decision making applied on the majority of civil projects and this imposes great financial and spiritual costs on our country. The present study attempts to present one of the civil projects (Ghasre Shirin storage dam) whose client was not ministry of energy for the first time and the short-term and long-term goals of the private sector were applied based on the triangle of quality, cost and time. Also, the math logic and model (multi-criteria decision making method and decision making matrix) is used in one of the most important sections of project, sealing element, policies and new materials (Geosynthetics) are considered and this leads to suitable decision making in this regard. It is worth to mention that this method is used for other sections of a dam including body, water diversion system, diaphragm and other sectors or in other civil projects of building, road construction, etc.