• Title/Summary/Keyword: Multi-configuration

Search Result 755, Processing Time 0.027 seconds

The effects of a 24 Weeks of combined exercise programs have on physical configuration, blood components and physical strength for normal and geriatric diseased senior citizens residing in the country side (중소도시 노인들의 24주간 복합운동 프로그램이 성인병 질환자 및 정상인의 신체구성, 혈액성분, 체력에 미치는 영향)

  • Kim, Young-Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.431-439
    • /
    • 2013
  • This thesis is to research the before and after changes of physical configurations, blood components and physical strength for normal and geriatric diseased senior citizens at the end of 24 week of combined exercises constructed of aerobic and muscular strength training to create most suitable and effective complex exercise program for geriatric diseased patients. For this experiment 20 normal and 20 geriatric diseased patients in the age of 65 residing in "K" city were selected to carry out the 24 weeks of combined exercises in regularly. The result of the research showed that geriatric patients increased significantly in everything, but normal group showed significant change in only WHR. There was a slight improvement in the blood components for the average participants but it only differed slightly from the diseased participants so there were no major changes reflecting the outcomes from both before and after. After concluding the program both groups displayed positive improvements in stamina but no significant alterations in physical strength., agility, muscle endurance and balance. The positive factors for each groups could be that the norms were able to maintain their health and enhancement in stamina and diseased were able to prevent their condition from worsening. Additionally, over 50 percent of all senior citizens have one or more geriatric diseases but the participation of any physical activity is in the decrease. Henceforth, this is a field that still needs a lot of work and combined exercise programs should be created and followed through so it may enhance in the improvement of health and quality of life as well.

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

Half and Full-Bridge Cell based Stand-Alone Photovoltaic Multi-Level Inverter (하프ㆍ풀-브리지 셀을 이용한 독립형 태양광 멀티레벨 인버터)

  • Kang Feel-Soon;Oh Seok-Kyu;Park Sung-Jun;Kim Jang-Mok;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.438-447
    • /
    • 2004
  • A new multilevel PWM inverter using a half-bridge and full-bridge cells is proposed for the use of stand-alone photovoltaic inverters. The configuration of the proposed multilevel PWM inverter is based on a prior 11-level shaped PWM inverter. Among three full-bridge cells employed in the prior inverter, one cell is substituted by a half-bridge cell. Owing to this simple alteration, the proposed inverter has three promising merits. First it increases the number of output voltage levels resulted in high quality output voltages. Second, it reduces two power switching devices by means of employing a half-bridge cell. Third, it reduces power imposed on a transformer connected with the half-bridge unit. That is to say, most power is transferred to loads via cascaded transformers connected with low switching inverters, which are used to synthesize the fundamental output voltage levels whereas the output of a transformer linked to a high switching inverter is used to improve the final output voltage waves; thus, it is desirable in the point of the improvement of the system efficiency. By comparing to the prior 11-level PWM inverter, it assesses the performance of the proposed inverter as a stand-alone photovoltaic inverter. The validity of the proposed inverter is verified by computer-aided simulations and experimental results.

eRPL : An Enhanced RPL Based Light-Weight Routing Protocol in a IoT Capable Infra-Less Wireless Networks (사물 인터넷 기반 기기 간 통신 무선 환경에서 향상된 RPL 기반 경량화 라우팅 프로토콜)

  • Oh, Hayoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.357-364
    • /
    • 2014
  • The first mission for the IoT based hyper-connectivity communication is developing a device-to-device communication technique in infra-less low-power and lossy networks. In a low-power and lossy wireless network, IoT devices and routers cannot keep the original path toward the destination since they have the limited memory. Different from the previous light-weight routing protocols focusing on the reduction of the control messages, the proposed scheme provides the light-weight IPv6 address auto-configuration, IPv6 neighbor discovery and routing protocol in a IoT capable infra-less wireless networks with the bloom filer and enhanced rank concepts. And for the first time we evaluate our proposed scheme based on the modeling of various probability distributions in the IoT environments with the lossy wireless link. Specifically, the proposed enhanced RPL based light-weight routing protocol improves the robustness with the multi-paths locally established based on the enhanced rank concepts even though lossy wireless links are existed. We showed the improvements of the proposed scheme up to 40% than the RPL based protocol.

Double-Gauss Optical System Design with Fixed Magnification and Image Surface Independent of Object Distance (물체거리가 변하여도 배율과 상면이 고정되는 이중 가우스 광학계의 설계)

  • Ryu, Jae Myung;Ryu, Chang Ho;Kim, Kang Min;Kim, Byoung Young;Ju, Yun Jae;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • A change in object distance would generally change the magnification of an optical system. In this paper, we have proposed and designed a double-Gauss optical system with a fixed magnification and image surface regardless of any change in object distance, according to moving the lens groups a little bit to the front and rear of the stop, independently parallel to the direction of the optical axis. By maintaining a constant size of image formation in spite of various object-distance changes in a projection system such as a head-up display (HUD) or head-mounted display (HMD), we can prevent the field of view from changing while focusing in an HUD or HMD. Also, to check precisely the state of the wiring that connects semiconductor chips and IC circuit boards, we can keep the magnification of the optical system constant, even when the object distance changes due to vertical movement along the optical axis of a testing device. Additionally, if we use this double-Gauss optical system as a vision system in the testing process of lots of electronic boards in a manufacturing system, since we can systematically eliminate additional image processing for visual enhancement of image quality, we can dramatically reduce the testing time for a fast test process. Also, the Gaussian bracket method was used to find the moving distance of each group, to achieve the desired specifications and fix magnification and image surface simultaneously. After the initial design, the optimization of the optical system was performed using the Synopsys optical design software.

Functionally Graded Structure Design for Heat Conduction Problems using Machine Learning (머신 러닝을 사용한 열전도 문제에 대한 기능적 등급구조 설계)

  • Moon, Yunho;Kim, Cheolwoong;Park, Soonok;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.159-165
    • /
    • 2021
  • This study introduces a topology optimization method for the simultaneous design of macro-scale structural configuration and unit structure variation to ensure effective heat conduction. Shape changes in the unit structure depending on its location within the macro-scale structure result in micro- as well as macro-scale design and enable better performance than using isotropic unit structures. They result in functionally graded composite structures combining both configurations. The representative volume element (RVE) method is applied to obtain various thermal conductivity properties of the multi-material based unit structure according to its shape change. Based on the RVE analysis results, the material properties of the unit structure having a certain shape can be derived using machine learning. Macro-scale topology optimization is performed using the traditional solid isotropic material with penalization method, while the unit structures composing the macro-structure can have various shapes to improve the heat conduction performance according to the simultaneous optimization process. Numerical examples of the thermal compliance minimization issue are provided to verify the effectiveness of the proposed method.

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

Development and Case Study of Unmanned Aerial Vehicles (UAVs) for Weather Modification Experiments (기상조절 실험용 드론의 설계·제작과 활용에 관한 연구)

  • Hae-Jung Koo;Miloslav Belorid;Hyun Jun Hwang;Min-Hoo Kim;Bu-Yo Kim;Joo Wan Cha;Yong Hee Lee;Jeongeun Baek;Jae-Won Jung;Seong-Kyu Seo
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.35-53
    • /
    • 2024
  • Under the leadership of the National Institute of Meteorological Sciences (NIMS), the first domestic autonomous flight-type weather modification experimental drone for fog and lower-level cloud seeding was developed in 2021. This drone is designed based on a multi-copter configuration with a maximum takeoff weight of approximately 25 kg, enabling the installation of up to four burning flares for seeding materials and facilitating weather observations (temperature, pressure, humidity, and wind) as well as aerosol (PM10, PM2.5, and PM1.0) particle measurements. This research aims to introduce the construction of the drone and its recent applications over the past two years, providing insights into the experimental procedures, effectiveness verification, and improvement directions of the weather modification drone-based rain enhancement. In particular, partial confirmation of the experimental effects was obtained through the fog dissipation experiment on December 10, 2021, and the lower-level cloud seeding case study on October 5, 2022. To enhance the scope and rainfall amount of weather modification experiments using drones, various technological approaches, including adjustments to experimental altitude, seeding lines, seeding amount, and verification methods are necessary. Through this research, we aim to propose the development direction for weather modification drone technology, which will serve as foundational technology for practical application of domestic rain enhancement technology.

A Study on Metaverse Framework Design for Education and Training of Hydrogen Fuel Cell Engineers (수소 연료전지 엔지니어 양성을 위한 메타버스 교육훈련 플랫폼에 관한 연구)

  • Yang Zhen;Kyung Min Gwak;Young J. Rho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • The importance of hydrogen fuel cells continues to be emphasized, and there is a growing demand for education and training in this field. Among various educational environments, metaverse education is opening a new era of change in the global education industry, especially to adapt to remote learning. The most significant change that the metaverse has brought to education is the shift from one-way, instructor-centered, and static teaching approaches to multi-directional and dynamic ones. It is expected that the metaverse can be effectively utilized in hydrogen fuel cell engineer education, not only enhancing the effectiveness of education by enabling learning and training anytime, anywhere but also reducing costs associated with engineering education.In this research, inspired by these ideas, we are designing a fuel cell education platform. We have created a platform that combines theoretical and practical training using the metaverse. Key aspects of this research include the development of educational training content to increase learner engagement, the configuration of user interfaces for improved usability, the creation of environments for interacting with objects in the virtual world, and support for convergence services in the form of digital twins.

Research on soil composition measurement sensor configuration and UI implementation (토양 성분 측정 센서 구성 및 UI 구현에 관한 연구)

  • Ye Eun Park;Jin Hyoung Jeong;Jae Hyun Jo;Young Yoon Chang;Sang Sik Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.76-81
    • /
    • 2024
  • Recently, agricultural methods are changing from experience-based agriculture to data-based agriculture. Changes in agricultural production due to the 4th Industrial Revolution are largely occurring in three areas: smart sensing and monitoring, smart analysis and planning, and smart control. In order to realize open-field smart agriculture, information on the physical and chemical properties of soil is essential. Conventional physicochemical measurements are conducted in a laboratory after collecting samples, which consumes a lot of cost, labor, and time, so they are quickly measured in the field. Measurement technology that can do this is urgently needed. In addition, a soil analysis system that can be carried and moved by the measurer and used in Korea's rice fields, fields, and facility houses is needed. To solve this problem, our goal is to develop and commercialize software that can collect soil samples and analyze the information. In this study, basic soil composition measurement was conducted using soil composition measurement sensors consisting of hardness measurement and electrode sensors. Through future research, we plan to develop a system that applies soil sampling using a CCD camera, ultrasonic sensor, and sampler. Therefore, we implemented a sensor and soil analysis UI that can measure and analyze the soil condition in real time, such as hardness measurement display using a load cell and moisture, PH, and EC measurement display using conductivity.