• Title/Summary/Keyword: Multi-component cement

Search Result 14, Processing Time 0.026 seconds

Development of Multi-Components Model of Cement Hydration

  • WangXiaoYong
    • Cement Symposium
    • /
    • s.34
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of cement mineral component, such as $C_3S$, $C_2S$, $C_3A$, $C_4AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component intergrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

Development of Multi-Components Model of Cement Hydration

  • Wang, Xiao-Yong;Lee, Han-Seung;Gyeong, Je-Un;Park, Gi-Bong
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2007.07a
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of hydration of cement mineral component, such as $C_{3}S$, $C_{2}S$, $C_{3}A$, $C_{4}AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component integrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

The Fundamental Characteristics for Mix Proportion of Multi-Component Cement (배합비에 따른 다성분계 시멘트의 기초특성)

  • Kim, Tae-Wan;Jeon, Jae-Woo;Seo, Min-A;Jo, Hyeon-Hyeong;Bae, Su-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.66-74
    • /
    • 2016
  • The aim of this research work is to investigate the mix proportion of multi-component cement incorporating ground granulated blast furnace(GGBFS), fly ash(FA) and silica fume(SF) as an addition to cement in ternary and quaternary combinations. The water-binder ratio was 0.45. In this study, 50% and 60% replacement ratios of mineral admixture to OPC was used, while series of combination of 20~40% GGBFS, 5~35% FA and 0~15% SF binder were used for fundamental characteristics tests. This study concern the GGBFS/FA ratio and SF contents of multi-component cement including the compressive strength, water absorptions, ultrasonic pulse velocity(UPV), drying shrinkage and X-ray diffraction(XRD) analysises. The results show that the addition of SF can reduce the water absorption and increase the compressive strength, UPV and drying shrinkage. These developments in the compressive strength, UPV and water absorption can be attributed to the fact that increase in the SF content tends basically to consume the calcium hydroxide crystals released from the hydration process leading to the formation of further CSH(calcium silicate hydrate). The strength, water absorption and UPV increases with an increase in GGBFS/FA ratios for a each SF contents. The relationship between GGBFS/FA ratios and compressive strength, water absorption, UPV is close to linear. It was found that the GGBFS/FA ratio and SF contents is the key factor governing the fundamental properties of multi-component cement.

The Strength Characteristics of Activated Multi-Component Cement with Kaolinite (카올린을 혼합한 활성화된 다성분계 시멘트의 강도 특성)

  • Kim, Tae-Wan;Kim, Im-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.593-600
    • /
    • 2016
  • The paper presented investigates the effects of kaolinite on strength properties of alkali-activated multi-component cement. The binders of this study was blended of ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF) and kaolinite (KA). In this study, the specimens of combination of 20%~70% GGBFS, 10%~60% FA, 10% SF (constant ratio) and 10%~50% KA binder were used for strength properties tests. The water/binder ratio was 0.5. The binders (GGBFS + FA + SF + KA) was activated by sodium hydroxide (NaOH) and sodium silicate ($Na_2SiO_3$) was 10% by total binder weight (10% NaOH + 10% $Na_2SiO_3$). The research carried out is on the compressive strength, water absorption, ultrasonic pulse velocity (UPV) and X-ray diffraction (XRD). The compressive strength decreased as the contents of KA increase. One of the major reason for this is the low reactivity of KA compared with other raw materials used as precursors such as GGBFS or FA. The presence of remaining KA indicates that the initially used quantity has not fully reacted during hydration. Moreover, the results have indicated that increased of KA contents decreased UPV under all experimental conditions. The drying shrinkage and water absorption increased as the content of KA increase. Test result clearly showed that the strength development of multi-component blended cement were significantly dependent on the content of KA and GGBFS.

A Hydration Model for Blended Concrete utilizing Secondary Cementitious Powders (혼화재를 사용한 콘크리트의 수화모델)

  • Noh Jea Myoung;Byun Keun Joo;Song Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.140-143
    • /
    • 2004
  • Heat of hydration of concrete under different curing temperatures can be characterized with knowledge of the thermal activity, the heat rate at the reference temperature, and the total heat of hydration of the mixture. The so-called multi-component hydration model incorporates the effect of following variables: cement chemical composition, cement fineness, secondary cementitious powders, mixture proportions, and concrete properties. However, the model does not consider the use of silica fume as a secondary cementitious powder. Therefore, the model that quantifies the heat of hydration due to the use of silica fume is needed. In this thesis, the effects of silica fume on heat of hydration are evaluated and the influence on the heat of hydration are also quantified to be included in the model, so that the analysis using modified multi-component hydration model for silica fume concrete provides more accurate results than normal concrete.

  • PDF

Simulation of Hydration of Portland Cement Blended With Mineral Admixtures

  • Wang, Xiaoyong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.565-566
    • /
    • 2009
  • Supplementary cementing materials (SCM), such as silica fume, slag, and low-calcium fly ash, have been widely used as mineral admixtures in high strength and high performance concrete. Due to the chemical and physical effect of SCM on hydration, compared with Portland cement, hydration process of cement incorporating SCM is much more complex. This paper presents a numerical hydration model which is based on multi-component concept and can simulate hydration of cement incorporating SCM. The proposed model starts with mixture proportion of concrete and considers both chemical and physical effect of SCM on hydration. Using this proposed model, this paper predicts the following properties of hydrating cement-SCM blends as a function of hydration time: reaction ratio of SCM, calcium hydroxide content, heat evolution, porosity, chemically bound water and the development of the compressive strength of concrete. The prediction results agree well with experiment results.

  • PDF

Performance Evaluation of Cement Composite Using Multi-Component Binder for Artificial Reef Produced by 3D Printer (인공어초 3D 프린팅 제작을 위한 다성분계 결합재 기반 시멘트 복합체의 성능 평가)

  • Seo, Ji-Seok;Kim, Hyo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.139-147
    • /
    • 2022
  • In this study, we designed a high-strength, low-alkali type cement composite for artificial reef by mixing various binders and evaluated whether it is possible to manufacture it with an ME method 3D printer. As a result of the tests, it is found that it is important to control the water-binder ratio, the silica sand-binder ratio, and the type of silica sand in order to control the fluidity of the cement composites to enable 3D printing. The surface quality of 3D printer output can be achieved by adjusting the amount of viscosity agent added while obtaining printable fluidity. In the cement composites mixing proportion using the alpha-type hemihydrate gypsum, a setting control agent needs to be used to control the quick setting effect. It is also necessary to derive the time to maintain the fluidity, and to apply it when printing. To obtain the required strength, the mix proportion needs to be modified while satisfying the fluidity level of 3D-printable cement composites. In the present study, 3D-printable mix proportions were designed by the use of multi-component binders including alpha-type hemihydrate gypsum a for low-alkali type artificial reefs, and the printability was confirmed. A further study needs to be performed to quantitatively evaluate the alkali reduction effect.

The Properties of Multi-Component Blended High Fluidity Mortar (다성분계 고유동 모르타르의 특성)

  • Kim, Tae-Wan;Kang, Choonghyun;Bae, Ju-Ryong;Kim, In-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • This research presents the results of an investigation on the characteristic of multi-component blended high fluidity mortars. The binder was blended ordinary Portland cement(OPC), ground granulated blast furnace slag(GGBFS), calcium sulfoaluminate(CSA) and ultra rapid setting cement(URSC). The GGBFS was replaced by OPC from 30%(P7 series), 50%(P5 series) and 70%(P3 series), CSA and URSC was 10% or 20% mass. The superplasticizer of polycarboxylate type were used. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. Test were conducted for mini slump, setting time, V-funnel, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA or URSC contents for all mixtures. Moreover, the setting time and drying shrinkage ratio decrease with and increase in CSA or URSC. CSA decreased dry shrinkage but URSC had less effect. However, the mixed binders of CSA and URSC had a large effect of reducing drying shrinkage by complementary effect. This is effective for improving the initial strength of URSC, and CSA is effective for the expansion and improvement of long-term strength.

Sulfate and Freeze-thaw Resistance Characteristic of Multi-component Cement Concrete Considering Marine Environment (해양환경을 고려한 다성분계 시멘트 콘크리트의 황산염 및 동결융해 저항 특성)

  • Kim, Myung-Sik;Beak, Dong-Il;Kang, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • Recently, concrete using multicomponent blended cement has been required to increase the freeze-thaw and sulfate resistances of concrete structures exposed to a marine environment. Thus, the purpose of this study was to propose the use of concrete containing multicomponent blended cement as one of the alternatives for concrete structures exposed to a marine environment. For this purpose, batches of concrete containing ordinary portland cement (OPC), binary blended cement (OPC-G, G: ground granulated blast slag), ternary blended cement (OPC-GF, F: fly ash), and quaternary blended cement (OPC-GFM, M: mata-kaolin) were made using a water-binder ratio of 50%. Then, the durability levels, including thesulfate and freeze-thaw resistances, were estimated for concrete samples containing OPC, OPC-G, OPC-GF, and OPC-GFM. It was observed from the tests that the durability levels of the concrete samples containing OPC-G and OPC-GF were found to be much better than that of the concrete containing OPC. The optimum mixing proportions were a40% replacement ratio of ground granulated blast slag for the binary blended cement and a30% replacement ratio of ground granulated blast slag and 10% fly ash for the ternary blended cement.

Comparative Experimental Study on Structural Behavior of Multi-component Self-Compacting Concrete (다성분계 고유동 콘크리트의 장${\cdot}$단기거동 비교 분석)

  • Noh Jea Myoung;Kwon Ki Joo;Nah Hwan Seon;Joung Won Seoup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.735-738
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using fly ash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

  • PDF