• Title/Summary/Keyword: Multi-component Particles

Search Result 14, Processing Time 0.033 seconds

Development of Multi-Components Model of Cement Hydration

  • Wang, Xiao-Yong;Lee, Han-Seung;Gyeong, Je-Un;Park, Gi-Bong
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2007.07a
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of hydration of cement mineral component, such as $C_{3}S$, $C_{2}S$, $C_{3}A$, $C_{4}AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component integrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

Development of Multi-Components Model of Cement Hydration

  • WangXiaoYong
    • Cement Symposium
    • /
    • s.34
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of cement mineral component, such as $C_3S$, $C_2S$, $C_3A$, $C_4AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component intergrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

Effect of Substrate Temperature on Multi-component Particle Deposition and Consolidation in Flame Hydrolysis Deposition (화염가수분해 증착 공정에서 기판온도의 변화에 따른 다성분 입자의 부착 및 소결특성에 관한 연구)

  • Shin, Hyung-Soo;Baek, Jong-Gab;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.428-433
    • /
    • 2000
  • The consolidation behavior of multicomponent particles prepared by the flame hydrolysis deposition process is examined to identify the effects of Si substrate temperature. To fabricate multi-component particles, a vapor-phase ternary mixture of $SiCl_4(100 cc/min),\;BCl_3(30cc/min)\;and\;POCl_3,(5cc/min)$ was fed into a coflow diffusion oxy-hydrogen flame burner. The doped silica soot bodies were deposited on silicon substrates under various deposition conditions. The surface temperature of the substrate was measured by an infrared thermometer. Changes in the chemical states of the doped silica soot bodies were examined by FT-IR(Fourier-transformed infrared spectroscopy). The deposited particles on the substrate were heated at $1300^{\circ}C$ for 3h in a furnace at a heating rate of 10K/min. Si-O-B bending peak has been found when surface temperature exceeds $720^{\circ}C$. Correspondingly, the case with substrate temperatures above loot produced good consolidation result.

  • PDF

Software Development for the Analysis and Prediction of Packing Density of Multi-sized Mixture Particles (Multi-sized 혼합입자의 충전 분율 해석 및 예측을 위한 소프트웨어 개발)

  • Oh, Min;Hong, Seong Uk
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.636-642
    • /
    • 2007
  • Software program to predict the packing density of multi-sized and multi-component particulate system was developed. For this purpose, the experiment to measure the packing density of AP (ammonium perchlorate) and Al (aluminum) particles with different sizes and their mixtures was carried out. The packing densities obtained from various experiments were compared with the predicted data from the developed software program. In the case of the packing density of the binary system, which is comprised of two different size particles and/or two different components, the relative errors were ranged 0.25~13.13%, and in the same venue the relative errors of the ternary system were 0.25~13.13%. Agreement between experimental data and the predicted results is reasonably accurate. In order to achieve the targeted packing density, the software program calculated the contour of the component particles and this will contribute the formulation of optimal packing systems.

Fabrication of Porous Ceramics and Multi-layered Ceramics Containing Porous Layers; I. Pore Structure (다공성 세라믹스와 다공질층을 포함하는 적층체의 제조에 관한 연구;I. 기공구조)

  • 이해원;윤복규;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1044-1052
    • /
    • 1994
  • Tape casting technique was successfully applied to produce porous ceramics and multi-layered ceramics containing porous layers, where spherical hollow polymer particles were introduced as pore precursors. In the presence of extreme differences in density and size between Al2O3 and pore precursor particles, hindered settling was effective in preventing segregation of component particles and packing behavior of mixed powders was improved through bimodal packing. There were two transitions in packing behavior of mixed powders. The first transition took place at 40~50 vol% pore precursor addition, where majority of pores changed from close to open pore state. The other transition occured at 60~70 vol% pore precursor addition, where pore precursor particles formed a continuous network structure.

  • PDF

Effect of Brownian Motion in Heat Transfer of H2O-Cu Nanofluid using LBM

  • Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.981-990
    • /
    • 2010
  • The main objective of this study is to investigate the fluid flow and the heat transfer characteristics of nanofluids using multi-phase thermal LBM and to realize theenhancement of heat transfer characteristics considered in the Brownian motion. In multi-phase, fluid component($H_2O$) is driven by Boussinesq approximation, and nanoparticles component by the external force gravity and buoyancy. The effect of Brownian motion as a random movement is modified to the internal velocity of nanoparticles(Cu). Simultaneously, the particles of both the phases assume the local equilibrium temperature after each collision. It has been observed that when simulating $H_2O$-Cu nanoparticles, the heat transfer is the highest, at the particle volume fraction 0.5% of the particle diameter 10 nm. The average Nusselt number is increased approximately by 33% at the particle volume fraction 0.5% of the particle diameter 10 nm when compared with pure water.

A Numerical Study on the Effectiveness Factor of Ni Catalyst Pellets for Steam-Methane Reforming (수증기-메탄개질용 Ni 촉매의 유용도에 관한 수치적 연구)

  • Choi, Chong-Gun;Nam, Jin-Hyun;Shin, Dong-Hoon;Jung, Tae-Yong;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.63-66
    • /
    • 2007
  • Reformers which produce hydrogen from natural gas are essential for the operation of residential PEM fuel cells. For this purpose, steam-methane reforming reactions with Ni catalysts is primarily utilized. Commercial Ni catalysts are generally made to have porous pellet shapes in which Ni catalyst particles are uniformly dispersed over Alumina support structures. This study numerically investigates the reduction of catalyst effectiveness due to the mass transport resistances posed by porous structures of spherical catalyst pellets. The multi-component diffusion through porous media and the accurate kinetics of reforming reaction is fully considered in the numerical model. The preliminary results on the variation of the effectiveness factor according to different operation conditions are presented, which is planned to be used to develop correlations in future studies.

  • PDF

A Case Study of Ionic Components in the Size-resolved Ambient Particles Collected Near the Volcanic Crater of Sakurajima, Japan

  • Ma, Chang-Jin;Kim, Ki-Hyun;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2010
  • In this study, the ionic composition of volcanogenically derived particles and their temporal and spatial distributions have been investigated to evaluate the impact of the volcanic eruption on the local ecosystem and residents. To this end, an intensive field study was conducted to measure the size-segregated particulate matters at the east part of Sakurajima in Japan. Fractionated sampling of particles into > $PM_{10}$, $PM_{10-2.5}$, and $PM_{2.5}$ was made by a multi nozzle cascade impactor (MCI). The concentration of various ions present in the size-resolved particles was determined by Ion chromatography. The time dependent 3-dimensional Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model developed by the NOAA Air Resources Laboratory (ARL) indicated that the sampling site of this work was affected by the volcanic aerosol particles plume. The temporal distributions of sulfate and $PM_{2.5}$ during the field campaign were significantly variable with important contributions to particle mass concentration. The chlorine loss, suspected to be caused by acidic components of volcanic gases, occurred predominantly in fine particles smaller than $10\;{\mu}m$.

Morphology and Electrical Conductivity of PS/PMMA/SMMA Blends Filled with Carbon Black

  • Lee, Moo-Sung;Ha, Min-Gyu;Ko, Hyun-Jin;Yang, Kap-Seung;Lee, Wan-Jin;Park, Min
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.32-36
    • /
    • 2000
  • An alternative strategy to .educe the percolation threshold of carbon black (CB) in polymer blends was investigated using random copolymer ternary blends of polystyrene (PS), poly(methyl methacrylate)(PMMA), and a styrene-methyl methacrylate random copolymer (SMMA). The target morphology was to selectively locate CB particles in the encapsulating layer of SMMA during melt mixing. The CB used in this study is BP-2000 from Cabot and has a strong selective affinity to PS. Even when the CB was premixed with SMMA, it moves to the PS phase during the melt mixing. However, we also observed the CB particles located at the interface between SMMA and PS phases. Through this study it is found that the interaction between polymers and CB particles is critical for selectively localizing CB particles in multi-component polymer blends. Although appropriate processing condition may retard the movement of CB particles to the polymer phase with affinity, it cannot prevent it completely and locate them to the SMMA phase, which is not thermodynamically favored. To locate CB particles in an encapsulating layer of ternary polymer blends, first of all, polymers forming it should have selective affinity to CB.

  • PDF

Fabrication of Multi-Layered Graphenes/P(S-co-BA) Nanocomposite via Sudden Heating Heterocoagulation Process

  • Choi, JinKyu;Lee, Eun-Kyoung;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.272-279
    • /
    • 2017
  • The heterocoagulation of latex is a simple and useful method to fabricate various polymer nanocomposites in which a precise control of the colloid stability is essential. In this work, a multi-layered graphenes (MLGs)/poly(styrene-co-butyl acrylate) (P(S-co-BA)) nanocomposite having an excellent dispersion of MLGs was prepared via the sudden heating heterocoagulation process. The P(S-co-BA) component was obtained by emulsion polymerization. This process can effectively shorten the process and particles growth steps. The colloid stability of these dispersions was controlled by factors such as ionic charge, temperature, and reaction times. The influence of these factors on heterocoagulation was evaluated and the properties of the nanocomposites were investigated. The conductivity of the MLGs/P(S-co-BA) nanocomposites increased from -11.53 to -5.70 S/cm for an increase in MLG content from 0.01 to 5 wt%. Moreover, percolation threshold was observed in the case of 0.01 wt% MLGs.