• 제목/요약/키워드: Multi-codes

Search Result 395, Processing Time 0.03 seconds

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Application of a new neutronics/thermal-hydraulics coupled code for steady state analysis of light water reactors

  • Safavi, Amir;Esteki, Mohammad Hossein;Mirvakili, Seyed Mohammad;Arani, Mehdi Khaki
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1603-1610
    • /
    • 2020
  • Due to ever-growing advancements in computers and relatively easy access to them, many efforts have been made to develop high-fidelity, high-performance, multi-physics tools, which play a crucial role in the design and operation of nuclear reactors. For this purpose in this study, the neutronic Monte Carlo and thermal-hydraulic sub-channel codes entitled MCNP and COBRA-EN, respectively, were applied for external coupling with each other. The coupled code was validated by code-to-code comparison with the internal couplings between MCNP5 and SUBCHANFLOW as well as MCNP6 and CTF. The simulation results of all code systems were in good agreement with each other. Then, as the second problem, the core of the VVER-1000 v446 reactor was simulated by the MCNP4C/COBRA-EN coupled code to measure the capability of the developed code to calculate the neutronic and thermohydraulic parameters of real and industrial cases. The simulation results of VVER-1000 core were compared with FSAR and another numerical solution of this benchmark. The obtained results showed that the ability of the MCNP4C/COBRA-EN code for estimating the neutronic and thermohydraulic parameters was very satisfactory.

Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment

  • Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.41-48
    • /
    • 2004
  • A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.

Shear Capacity of Reinforced Concrete Beams Using Neural Network

  • Yang, Keun-Hyeok;Ashour, Ashraf F.;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.63-73
    • /
    • 2007
  • Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.

Performance Enhancement of an OFDMA/CDM-based Cellular System in a Multi-Cell Environment (다중셀 환경에서 OFDMA/CDM 기반 셀룰라 시스템의 성능 개선)

  • Kim, Duk-Kyung;Ryu, Je-Hun;Jeong, Bu-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.587-596
    • /
    • 2005
  • In this paper, we propose an OFDMA/CDM-based cellular system, which accommodates multiple users in frequency-domain and multiplexes user data with frequency-domain spreading. The proposed system utilizes random codes to discriminate cells and adopts the pre-equalization to enhance the performance. For cellular applications, a number of pre-equalization techniques are compared and an efficient power allocation scheme is suggested with a transmit power constraint. Especially, the validity of OFDMA/CDM based cellular system is investigated, by comparing the performance for varying the number of multiplexed data symbols at different locations. Finally the pre/post-equalization is proposed to reduce the performance degradation caused by time delay.

Performance Modeling of STTC-based Dual Virtual Cell System under the Overlay Convergent Networks of Cognitive Networking (중첩 융합 네트워크 환경을 고려한 STTC기반 이중 셀 시스템 분석 모델)

  • Choi, YuMi;Kim, Jeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.20-26
    • /
    • 2012
  • The newly introduced model of a STTC-based Distributed Wireless Communication System (DWCS) can provide the capability of joint control of the signals at multiple cells. This paper has considered the virtual cell systems: the Dual Virtual Cell (DVC), and also proposes DVC employment strategy based on DWCS network. The considered system constructs DVC by using antenna selection method. Also, for multi-user high-rate data transmission, the proposed system introduces multiple antenna technology to get a spatial and temporal diversity gain and exploits space-time trellis codes known as STTC to increase a spectral efficiency.

A force-based element for direct analysis using stress-resultant plasticity model

  • Du, Zuo-Lei;Liu, Yao-Peng;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.175-186
    • /
    • 2018
  • The plastic hinge method and the plastic zone method are extensively adopted in displacement-based elements and force-based elements respectively for second-order inelastic analysis. The former enhances the computational efficiency with relatively less accurate results while the latter precisely predicts the structural behavior but generally requires more computer time. The displacement-based elements receive criticism mainly on plasticity dominated problems not only in accuracy but also in longer computer time to redistribute the forces due to formation of plastic hinges. The multi-element-per-member model relieves this problem to some extent but will induce a new problem in modeling of member initial imperfections required in design codes for direct analysis. On the contrary, a force-based element with several integration points is sufficient for material yielding. However, use of more integration points or elements associated with fiber section reduces computational efficiency. In this paper, a new force-based element equipped with stress-resultant plasticity model with minimal computational cost is proposed for second-order inelastic analysis. This element is able to take the member initial bowing into account such that one-element-per-member model is adequate and complied with the codified requirements of direct analysis. This innovative solution is new and practical for routine design. Finally, several examples demonstrate the validity and accuracy of the proposed method.

ON THE MODELLING OF TWO-PHASE FLOW IN HORIZONTAL LEGS OF A PWR

  • Bestion, D.;Serre, G.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.871-888
    • /
    • 2012
  • This paper aims at presenting the state of the art, the recent progress, and the perspective for the future, in the modelling of two-phase flow in the horizontal legs of a PWR. All phenomena relevant for safety analysis are listed first. The selection of the modelling approach for system codes is then discussed, including the number of fluids or fields, the space and time resolution, and the use of flow regime maps. The classical two-fluid six-equation one-pressure model as it is implemented in the CATHARE code is then presented and its properties are described. It is shown that the axial effects of gravity forces may be correctly taken into account even in the case of change of the cross section area or of the pipe orientation. It is also shown that it can predict both fluvial and torrential flow with a possible hydraulic jump. Since phase stratification plays a dominant role, the Kelvin-Helmholtz instability and the stability of bubbly flow regime are discussed. A transition criterion based on a stability analysis of shallow water waves may be used to predict the Kelvin-Helmholtz instability. Recent experimental data obtained in the METERO test facility are analysed to model the transition from a bubbly to stratified flow regime. Finally, perspectives for further improvement of the modelling are drawn including dynamic modelling of turbulence and interfacial area and multi-field models.

ANALYSIS OF THE ISP-50 DIRECT VESSEL INJECTION SBLOCA IN THE ATLAS FACILITY WITH THE RELAP5/MOD3.3 CODE

  • Sharabi, Medhat;Freixa, Jordi
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.709-718
    • /
    • 2012
  • The pressurized water reactor APR1400 adopts DVI (Direct Vessel Injection) for the emergency cooling water in the upper downcomer annulus. The International Standard Problem number 50 (ISP-50) was launched with the aim to investigate thermal hydraulic phenomena during a 50% DVI line break scenario with best estimate codes making use of the experimental data available from the ATLAS facility located at KAERI. The present work describes the calculation results obtained for the ISP-50 using the RELAP5/MOD3.3 system code. The work aims at validation and assessment of the code to reproduce the observed phenomena and investigate about its limitations to predict complicated mixing phenomena between the subcooled emergency cooling water and the two-phase flow in the downcomer. The obtained results show that the overall trends of the main test variables are well reproduced by the calculations. In particular, the pressure in the primary system show excellent agreement with the experiment. The loop seal clearance phenomenon was observed in the calculation and it was found to have an important influence on the transient progression. Moreover, the collapsed water levels in the core are accurately reproduced in the simulations. However, the drop in the downcomer level before the activation of the DVI from safety injection tanks was underestimated due to multi-dimensional phenomena in the downcomer that are not properly captured by one-dimensional simulations.

Design of Integrated Control Software for Automated Observing System

  • Ji, Tae-Geun;Lee, Hye-In;Pak, Soojong;Im, Myungshin;Lee, Sang-Yun;Gibson, Coyne A.;Kuehne, John;Marshall, Jennifer
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2017
  • Remote and robotic telescopes are the most effective instrument for astronomical survey projects. The system is based on the dynamic operation of all astronomical instruments such as dome and telescope control system (TCS), focuser, filter wheel and data taking camera. We adopt the ASCOM driver platform to control the instruments through the integrated software. It can convert different interface libraries from various manufacturers into a uniform standard library. This allows us to effectively control astronomical instruments without modifying codes. We suggest a conceptual design of software for automation of a small telescope such as the new wide-field 0.25m telescope at McDonald Observatory. It can also be applied to operation of multi-telescopes in future projects.

  • PDF