• Title/Summary/Keyword: Multi-clouds

Search Result 82, Processing Time 0.033 seconds

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Detection of Water Cloud Microphysical Properties Using Multi-scattering Polarization Lidar

  • Xie, Jiaming;Huang, Xingyou;Bu, Lingbing;Zhang, Hengheng;Mustafa, Farhan;Chu, Chenxi
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.174-185
    • /
    • 2020
  • Multiscattering occurs when a laser transmits into dense atmosphere targets (e.g. fogs, smoke or clouds), which can cause depolarization effects even though the scattering particles are spherical. In addition, multiscattering effects have additional information about microphysical properties of scatterers. Thus, multiscattering can be utilized to study the microphysical properties of the liquid water cloud. In this paper, a Monte Carlo method was used to simulate multi-scattering transmission properties of Lidar signals in the cloud. The results showed the slope of the degree of linear polarization (SLDLP) can be used to invert the extinction coefficient, and then the cloud effective size (CES) and the liquid water content (LWC) may be easily obtained by using the extinction coefficient and saturation of the degree of linear polarization (SADLP). Based on calculation results, a microphysical properties inversion method for a liquid cloud was presented. An innovative multiscattering polarization Lidar (MSPL) system was constructed to measure the LWC and CES of the liquid cloud, and a new method based on the polarization splitting ratio of the Polarization Beam Splitter (PBS) was developed to calibrate the polarization channels of MSPL. By analyzing the typical observation data of MSPL observation in the northern suburbs of Nanjing, China, the LWC and CES of the liquid water cloud were obtained. Comparisons between the results from the MSPL, MODIS and the Microwave radar data showed that, the microphysical properties of liquid cloud could be retrieved by combining our MSPL and the inversion method.

Land Cover Mapping and Availability Evaluation Based on Drone Images with Multi-Spectral Camera (다중분광 카메라 탑재 드론 영상 기반 토지피복도 제작 및 활용성 평가)

  • Xu, Chun Xu;Lim, Jae Hyoung;Jin, Xin Mei;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2018
  • The land cover map has been produced by using satellite and aerial images. However, these two images have the limitations in spatial resolution, and it is difficult to acquire images of a area at desired time because of the influence of clouds. In addition, it is costly and time-consuming that mapping land cover map of a small area used by satellite and aerial images. This study used multispectral camera-based drone to acquire multi-temporal images for orthoimages generation. The efficiency of produced land cover map was evaluated using time series analysis. The results indicated that the proposed method can generated RGB orthoimage and multispectral orthoimage with RMSE (Root Mean Square Error) of ${\pm}10mm$, ${\pm}11mm$, ${\pm}26mm$ and ${\pm}28mm$, ${\pm}27mm$, ${\pm}47mm$ on X, Y, H respectively. The accuracy of the pixel-based and object-based land cover map was analyzed and the results showed that the accuracy and Kappa coefficient of object-based classification were higher than that of pixel-based classification, which were 93.75%, 92.42% on July, 92.50%, 91.20% on October, 92.92%, 91.77% on February, respectively. Moreover, the proposed method can accurately capture the quantitative area change of the object. In summary, the suggest study demonstrated the possibility and efficiency of using multispectral camera-based drone in production of land cover map.

Quantitative Analysis of Snow Particles Using a Multi-Angle Snowflake Camera in the Yeongdong Region (영동지역에서 눈결정 카메라를 활용한 눈결정의 정량 분석)

  • Kim, Su-Hyun;Ko, Dae-Hong;Seong, Dae-Kyung;Eun, Seung-Hee;Kim, Byung-Gon;Kim, Baek-Jo;Park, Chang-Geun;Cha, Ju-Wan
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.311-324
    • /
    • 2019
  • We employed a Multi-Angle Snowflake Camera (MASC) to quantitatively analyze snow particles at the ground level in the Yeongdong region of Korea. The MASC captures high-resolution photographs of hydrometeors from three angles and simultaneously measures fallspeed. Based on snowflake images of the several episodes in 2017 and 2018, we derived statistics of size, aspect ratio, orientation, complexity, and fallspeed of snow crystals, which generally showed similar characteristics to the previous studies in other regions of the world. Dominant snow crystal habits of January 22, 2018 generated by northerly were melted aggregates when 850 hPa temperature was about $-6{\sim}-8^{\circ}C$. Average fallspeed of snow crystals was $1.0m\;s^{-1}$ though its size gradually increased as temperature decreased. Another snowfall event (March 8, 2018) was driven by the baroclinic instability as accompanied with a deep trough. Snow crystal habits were largely rimed aggregates (complexity ~1.8) and melting particles of dark images. Meanwhile, in the extreme snowfall event whose snow rate was greater than $10cm\;hr^{-1}$ on January 20, 2017, main snow crystals appeared to be heavily rimed particles with relatively smaller size when convective clouds developed vertically up to 9 km in association with tropopause folding. MASC also could successfully measure a decrease in snow crystal size and an increase in riming degree after AgI seeding at Daegwallyeong on March 14, 2017.

Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin (Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석)

  • Kim, Byeongcheol;Lee, Kyungil;Park, Seonyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.765-779
    • /
    • 2022
  • This study evaluates the accuracy in identifying the burned area in South Korea using multi-temporal data from Sentinel-2 MSI and Landsat 8/9 OLI. Spectral indices such as the Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), and Burned Area Index (BAI) were used to identify the burned area in the March 2022 forest fire in Uljin. Based on the results of six indices, the accuracy to detect the burned area was assessed for four satellites using Sentinel-2 and Landsat 8/9, respectively. Sentinel-2 and Landsat 8/9 produce images every 16 and 10 days, respectively, although it is difficult to acquire clear images due to clouds. Furthermore, using images taken before and after a forest fire to examine the burned area results in a rapid shift because vegetation growth in South Korea began in April, making it difficult to detect. Because Sentinel-2 and Landsat 8/9 images from February to May are based on the same date, this study is able to compare the indices with a relatively high detection accuracy and gets over the temporal resolution limitation. The results of this study are expected to be applied in the development of new indices to detect burned areas and indices that are optimized to detect South Korean forest fires.

Comparison of Reflectance and Vegetation Index Changes by Type of UAV-Mounted Multi-Spectral Sensors (무인비행체 탑재 다중분광 센서별 반사율 및 식생지수 변화 비교)

  • Lee, Kyung-do;Ahn, Ho-yong;Ryu, Jae-hyun;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.947-958
    • /
    • 2021
  • This study was conducted to provide basic data for crop monitoring by comparing and analyzing changes in reflectance and vegetation index by sensor of multi-spectral sensors mounted on unmanned aerial vehicles. For four types of unmanned aerial vehicle-mounted multispectral sensors, such as RedEdge-MX, S110 NIR, Sequioa, and P4M, on September 14 and September 15, 2020, aerial images were taken, once in the morning and in the afternoon, a total of 4 times, and reflectance and vegetation index were calculated and compared. In the case of reflectance, the time-series coefficient of variation of all sensors showed an average value of about 10% or more, indicating that there is a limit to its use. The coefficient of variation of the vegetation index by sensor for the crop test group showed an average value of 1.2 to 3.6% in the crop experimental sites with high vitality due to thick vegetation, showing variability within 5%. However, this was a higher value than the coefficient of variation on a clear day, and it is estimated that the weather conditions such as clouds were different in the morning and afternoon during the experiment period. It is thought that it is necessary to establish and implement a UAV flight plan. As a result of comparing the NDVI between the multi-spectral sensors of the unmanned aerial vehicle, in this experiment, it is thought that the RedEdeg-MX sensor can be used together without special correction of the NDVI value even if several sensors of the same type are used in a stable light environment. RedEdge-MX, P4M, and Sequioa sensors showed a linear relationship with each other, but supplementary experiments are needed to evaluate joint utilization through off-set correction between vegetation indices.

Efficiency Evaluation of Contour Generation from Airborne LiDAR Data (LiDAR 데이터를 이용한 등고선 제작의 효율성 평가)

  • Wie, Gwang-Jae;Lee, Im-Pyeong;Kang, In-Gu;Cho, Jae-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.59-66
    • /
    • 2007
  • The digital working environment and its related technology have been rapidly expanding. In the surveying field, we have changed from using optical film cameras and plotters to digital cameras, multi sensors like GPS/INS etc,. The old analog work flow is replaced by a new digital work flow. Accurate data of the land is used in various fields, efficient utilization and management of land, urban planning, disaster and environment management. It is important because it is an essential infrastructure. For this study, LiDAR surveying was used to get points clouds in the study area. It has a high vegetation penetrating advantage and we used a digital process from planning to the final products. Contour lines were made from LiDAR data and compared with national digital base maps (scale 1/1,000 and 1/5,000). As a result, the accuracy and the economical efficiency were evaluated. The accuracy of LiDAR contour data was average $0.089m{\pm}0.062\;m$ and showed high ground detail in complex areas. Compared with 1/1,000 scale contour line production when surveying an area over $100\;km^2$, approximately 48% of the cost was reduced. Therefore we prepose LiDAR surveying as an alternative to modify and update national base maps.

  • PDF

A Study on the Automatic Detection of Railroad Power Lines Using LiDAR Data and RANSAC Algorithm (LiDAR 데이터와 RANSAC 알고리즘을 이용한 철도 전력선 자동탐지에 관한 연구)

  • Jeon, Wang Gyu;Choi, Byoung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.331-339
    • /
    • 2013
  • LiDAR has been one of the widely used and important technologies for 3D modeling of ground surface and objects because of its ability to provide dense and accurate range measurement. The objective of this research is to develop a method for automatic detection and modeling of railroad power lines using high density LiDAR data and RANSAC algorithms. For detecting railroad power lines, multi-echoes properties of laser data and shape knowledge of railroad power lines were employed. Cuboid analysis for detecting seed line segments, tracking lines, connecting and labeling are the main processes. For modeling railroad power lines, iterative RANSAC and least square adjustment were carried out to estimate the lines parameters. The validation of the result is very challenging due to the difficulties in determining the actual references on the ground surface. Standard deviations of 8cm and 5cm for x-y and z coordinates, respectively are satisfactory outcomes. In case of completeness, the result of visual inspection shows that all the lines are detected and modeled well as compare with the original point clouds. The overall processes are fully automated and the methods manage any state of railroad wires efficiently.

Analysis of Urban Heat Island Effect Using Time Series of Landsat Images and Annual Temperature Cycle Model (시계열 Landsat TM 영상과 연간 지표온도순환 모델을 이용한 열섬효과 분석)

  • Hong, Seung Hwan;Cho, Han Jin;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2015
  • Remote sensing technology using a multi-spectral satellite imagery can be utilized for the analysis of urban heat island effect in large area. However, weather condition of Korea mostly has a lot of clouds and it makes periodical observation using time-series of satellite images difficult. For this reason, we proposed the analysis of urban heat island effect using time-series of Landsat TM images and ATC model. To analyze vegetation condition and urbanization, NDVI and NDBI were calculated from Landsat images. In addition, land surface temperature was calculated from thermal infrared images to estimate the parameters of ATC model. Furthermore, the parameters of ATC model were compared based on the land cover map created by Korean Ministry of Environment to analyze urban heat island effect relating to the pattern of land use and land cover. As a result of a correlation analysis between calculated spectral indices and parameters of ATC model, MAST had high correlation with NDVI and NDBI (-0.76 and 0.69, respectively) and YAST also had correlation with NDVI and NDBI (-0.53 and 0.42, respectively). By comparing the parameters of ATC model based on land cover map, urban area had higher MAST and YAST than agricultural land and grassland. In particular, residential areas, industrial areas, commercial areas and transportation facilities showed higher MAST than cultural facilities and public facilities. Moreover, residential areas, industrial areas and commercial areas had higher YAST than the other urban areas.

A Technique for Provisioning Virtual Clusters in Real-time and Improving I/O Performance on Computational-Science Simulation Environments (계산과학 시뮬레이션을 위한 실시간 가상 클러스터 생성 및 I/O 성능 향상 기법)

  • Choi, Chanho;Lee, Jongsuk Ruth;Kim, Hangi;Jin, DuSeok;Yu, Jung-lok
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Computational science simulations have been used to enable discovery in a broad spectrum of application areas, these simulations show irregular demanding characteristics of computing resources from time to time. The adoption of virtualized high performance cloud, rather than CPU-centric computing platform (such as supercomputers), is gaining interest of interests mainly due to its ease-of-use, multi-tenancy and flexibility. Basically, provisioning a virtual cluster, which consists of a lot of virtual machines, in a real-time has a critical impact on the successful deployment of the virtualized HPC clouds for computational science simulations. However, the cost of concurrently creating many virtual machines in constructing a virtual cluster can be as much as two orders of magnitude worse than expected. One of the main factors in this bottleneck is the time spent to create the virtual images for the virtual machines. In this paper, we propose a novel technique to minimize the creation time of virtual machine images and improve I/O performance of the provisioned virtual clusters. We also confirm that our proposed technique outperforms the conventional ones using various sets of experiments.