• Title/Summary/Keyword: Multi-beam antenna

Search Result 92, Processing Time 0.026 seconds

Design of Broadband Spiral Antenna for Non-Linear Junction Detector (비선형 소자 탐지용 광대역 스파이럴 안테나의 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik;Lee, Kwang-Kun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • This paper presents a design of spiral antenna with broad bandwidth for non-linear junction detector(NLJD). An elliptical patch as radiating element located on center position of radiating surface, as well as the spiral elements on radiating surface was designed for broad bandwidth of spiral antenna. An antenna ground structure generating the multi resonance by spiral slit inserted on ground surface was also proposed. In order to realize high directivity and high gain of the proposed antenna, the cavity wall made of Fr4-epoxy and the metal cap were considered in design. As a result, the calculated gain of antenna with metal cap was improved about 3 dB with comparison of antenna without metal cap and the measured main beam directivity toward -z axis direction agreed well with calculation result. The measured axial ratio satisfied the circular polarization within -z axis ${\pm}45^{\circ}$ at design frequency bands and showed reasonable agreement with prediction.

Modified Fold Type Helicone Reflector for Efficient Satellite TT&C Having Variable Coverage Area (가변 커버리지를 갖는 위성 관제용 접이식 헬리콘 반사체 안테나 성능 연구)

  • Lee, Sang-Min;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.914-923
    • /
    • 2009
  • Helix antennas have been widely applied to satellite TT&C, data communication and GPS receiver systems onboard military, remote sensing and communication purpose satellites. The helix antennas are known to be convenient to control impedance and radiation coverage characteristics with a maximum directivity in satellite z-axis. Waveguide horn is commonly used for radar system that needs ultra-wideband pulse for exploration ground radar and electromagnetic disability measurement etc. It has high efficiency and low reflection characteristics provided by the low-profile shape and suppressed radiation distortion. In this paper, a waveguide horn structure incorporated with helix antenna design is proposed for satellite applications that require ultra-wideband pulse radar and high rate RF data communication link to ground station over wide coverage area. The main design concern is to synthesize variable beam forming pattern based on modified horn-helix combination helicone structure such that multi-mission antenna is implemented applicable for TT&C, earth observation, high data rate transmission. Waveguide horn helps to reduce the overall antenna structure size by introduction fold type reflector connected to the tapered helix antenna. The next generation KOMPSAT satellite currently under development requires high-performance precision attitude control system. We present an initial design of a hybrid hern-helix antenna structure suitable for efficient RF communication module design of multi-purpose satellite systems.

Researches on Microstrip Reflectarray Antennas (마이크로스트립 리플렉트어레이 안테나에 관한 연구)

  • Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.937-950
    • /
    • 2015
  • Microstrip reflectarray is an antenna which controls its radiation pattern with a number of reflective elements. Conventionally, the reflectarray has been researched to replace curved reflector antennas. In this paper, design theories of reflectarray is briefly introduced, and research trends of high gain and broadband reflectarrays are reviewed. To improve the gain of the reflectarrays, it is required that the reflection phase errors on the reflectarray surface be minimized. For this purpose, sufficiently wide reflection phase range and low phase sensitivity should be realized with the designed element. For bandwidth improvement, the reflection phase of the element should be linear with the frequency variation. In this paper, various researches to improve the reflection phase characteristics of the element for high gain and broadband reflectarrays, such as multi-layer and single-layer multi-resonant structures, are reviewed. Also, dual-reflectarray configuration for compact antenna design is reviewed. Finally, various applications of reflectarrays such as contoured beam, near-field focusing, and RCS reduction are reviewed.

Analysis of the Capacity Region for Two-tier Spatial Diversified Wireless Mesh Networks

  • Torregoza, John Paul;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1697-1705
    • /
    • 2008
  • Several studies made for wireless mesh networks aim to optimize the capacity for wireless networks. Aside from protocol improvements, researches were also done on the physical layer particularly on modulation techniques and antenna efficiency schemes. This paper is concerned with the capacity improvements derived from using spatial diversity with smart adaptive array antennas. The use of spatial diversity, which has been widely proposed for use in cellular networks in order to lessen frequency re-use, can be used in mesh networks both to minimize co-channel interference (CCI) and enable multiple transmissions. This paper aims to study the capacity region and bounds in using smart antennas for single-channel multi-radio systems in relation to the number of spatial diversity or sectors as defined by the beam angle $\beta$.

  • PDF

Development of Polarization-Controllable Active Phased Array Antenna for Receiving Satellite Broadcasting (편파가변 위성 방송 수신용 능동 위상 배열 안테나 개발)

  • Choi, Jin-Young;Lee, Ho-Seon;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.325-335
    • /
    • 2018
  • We herein present a study on the active phased array antenna for receiving satellite broadcasting that can electrically align its polarization to that of target transmitters in its moving condition or in the Skew angle arrangement of the broadcasting satellite receiver. Hence, we have developed an active phased array structure composed of the self-developed Vivaldi antenna and multifunction core (MFC) chip, receiving RF front end module, and control units. In particular, the new Vivaldi antenna designed in the Ku-band of 10.7 - 14.5 GHz to receive one desired polarization mode such as the horizontal or vertical by means of an MFC chip and other control units that can control the amplitude and phase of each antenna element. The test results verified that cross-polarization property is 20 dB or higher and the primary beam can be scanned clearly at approximately ${\pm}60^{\circ}$.

Symmetric Microwave Lens with Uniform Insertion Loss for Broad-band and Wide Beam Steering Coverage (균일한 삽입손실을 갖는 광대역 빔 조향용 대칭형 초고주파 렌즈)

  • 김인선;이광일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 2002
  • In this paper, a symmetric microwave lens to steer wide angle and to operate at broad band frequency range for a linear phased array transmitter was designed. To get accurate beam steering performance far a linear phased array transmitter, uniform amplitude transmission characteristics of microwave lens was focused. The measured result for the insertion loss deviation between Input and output ports of microstrip lens with 8 beam ports and 8 array ports was $\pm$3.1 ㏈ over 6~18 ㎓ band, which was very uniform characteristics. Using 8 elements linear array antenna, it was confirmed the radiation beam could be steered over $\pm$60$^{\circ}$ in azimuth. And the measured lens performance data and multi-beam steering pattern were presented.

16-QAM OFDM-Based K-Band LoS MIMO Communication System with Alignment Mismatch Compensation

  • Kim, Bong-Su;Kim, Kwang-Seon;Kang, Min-Soo;Byun, Woo-Jin;Song, Myung-Sun;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.535-545
    • /
    • 2017
  • This paper presents a novel K-band (18 GHz) 16-quadrature amplitude modulation (16-QAM) orthogonal frequency-division multiplexing (OFDM)-based $2{\times}2$ line-of-sight multi-input multi-output communication system. The system can deliver 356 Mbps on a 56 MHz channel. Alignment mismatches, such as amplitude and/or phase mismatches, between the transmitter and receiver antennas were examined through hardware experiments. Hardware experimental results revealed that amplitude mismatch is related to antenna size, antenna beam width, and link distance. The proposed system employs an alignment mismatch compensation method. The open-loop architecture of the proposed compensation method is simple and enables facile construction of communication systems. In a digital modem, 16-QAM OFDM with a 512-point fast Fourier transform and (255, 239) Reed-Solomon forward error correction codecs is used. Experimental results show that a bit error rate of $10^{-5}$ is achieved at a signal-to-noise ratio of approximately 18.0 dB.

Current Trends of the Synthetic Aperture Radar (SAR) Satellite Development and Future Strategy for the High Resolution Wide Swath (HRWS) SAR Satellite Development (SAR(Synthetic Aperture Radar) 위성 개발현황 및 향후 HRWS(High Resolution Wide Swath) SAR 위성 개발전략)

  • Ko, Ungdai;Seo, Inho;Lee, Juyoung;Jeong, Hyunjae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.337-355
    • /
    • 2021
  • This paper is made to suggest a future strategy for the Korean High Resolution Wide Swath Synthetic Aperture Radar (HRWS SAR) satellite development by surveying the current trends for the SAR satellite technologies. From the survey, the latest SAR technology trends are revealed of using Digital Beam-Forming (DBF), SCan-On-Receive (SCORE), Displaced Phase Center Antenna (DPCA), interferometry, and polarimetry for exploiting the SAR imagery. Based on the latest SAR technology trends and the foreign HRWS SAR development cases, the strategy for the future HRWS Korean SAR satellite development is suggested to develop the DPCA and SCORE technologies by using the KOrea Multi-Purpose SATellite-6 (KOMPSAT-6) which is going to launch in a few years, and consequently to develop the HRWS SAR satellites which can monitor the whole Earth at weekly intervals.

Design of A Microstrip Linear Tapered Slot Antenna (마이크로스트립 선형 테이퍼형 슬롯 안테나 설계)

  • Jang, Jae-Sam;Kim, Cheol-Bok;Lee, Ho-Sang;Jung, Young-Ho;Jo, Dong-Ki;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.40-45
    • /
    • 2008
  • In this paper, a microstrip linear tapered slot antenna is designed. A tapered slot antenna(TSA) has many advantages such as low profile, low weight, easy fabrication, and compatibility with monolithic microwave integrated circuits(MMIC). In addition, it has demonstrated multi octave bandwidth, moderately high gain, and symmetrical E- and H-plane beam patterns. A feed network is implemented with transition between a microstrip and a slot line for the microstrip linear tapered slot antenna. The transition is consist of two sides. One side has a microstrip line, the other side has a slot line. The dimensions of the microstrip and slot line are ${\lambda}_m/4$ and ${\lambda}_s/4$ at the center of the cross section of the microstrip and slot line. In order to get broad bandwidth antenna characteristics, the tapered length is chosen as $4{\lambda}_o$ and termination width is chosen as $1.75{\lambda}_o$. Experimental results show that the microstrip tapered slot antenna has symmetrical E- and H-plane beam patterns with around 5GHz of bandwidth at center frequency of 5.0GHz.

BER performance analysis by angle spreading effect in the DoA estimation and beam-forming using 3D phase array antenna (3D 위상 배열 안테나를 이용한 DoA 추정과 빔 형성시 각도 퍼짐에 의한 BER 성능 분석)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2009
  • This paper deals with the performance comparison of jammer signal's angle spreading in the beamforming after the estimation of direction of arrival using 3D array antenna basis of the GPS signal. After the estimation of direction of arrival using array antenna, the beamforming is need for the direction of arrival by spatial filtering and the other direction are nulling for reducing intererence signal, it is possible to improving the received signal strength and quality. But we obtains the degraded performance by the angle spreading due to the multi-jammer signal in this process. In this paper, the MUSIC and LCMV algorithms are applied for the estimating the direction of arrival and for beamforming using the 5 types of 3D array antenna. we performs the comparison of performance by calculating the bit error rate applying the BPSK modem and the varying the azimuth and elevation angle of incoming jammer signal. As a result of simulation, the Curved (B) type 3D array antenna has a more better performance compared to the other type antenna.

  • PDF