• 제목/요약/키워드: Multi-atlas based segmentation

검색결과 7건 처리시간 0.027초

무릎 MR 영상에서 다중 아틀라스 기반 지역적 가중투표를 이용한 대퇴부 연골 자동 분할 (Automatic Segmentation of Femoral Cartilage in Knee MR Images using Multi-atlas-based Locally-weighted Voting)

  • 김현아;김현진;이한상;홍헬렌
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.869-877
    • /
    • 2016
  • 본 논문에서는 무릎 MR 영상에서 다중 아틀라스 기반 지역적 가중투표를 이용한 대퇴부 연골 자동 분할 방법을 제안한다. 제안하는 방법은 다음의 두 단계로 구성된다. 첫째, 대퇴부 연골이 대퇴골에 붙어 있다는 형상정보를 이용하기 위해 볼륨 및 객체 정합 기반의 지역적 가중투표와 협대역 영역확장을 통해 대퇴골을 분할한다. 둘째, 대퇴골의 객체 기반 어파인 변환을 대퇴부 연골 정합에 적용한 후, 다중 아틀라스 형상 기반의 지역적 가중투표를 통해 대퇴부 연골을 분할한다. 제안 방법의 성능을 평가하기 위해 다수투표 기법, 밝기값 기반 지역적 가중투표 기법과 제안 방법의 분할 결과를 전문가에 의한 수동 분할 결과와 비교한다. 실험 결과 제안 방법이 주변 유사 밝기값 영역으로의 누출을 방지하여 분할 정확도가 향상되었음을 보여준다.

복부 컴퓨터 단층촬영영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할 (Automatic Segmentation of Renal Parenchyma using Graph-cuts with Shape Constraint based on Multi-probabilistic Atlas in Abdominal CT Images)

  • 이재선;홍헬렌;나군호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권4호
    • /
    • pp.11-19
    • /
    • 2016
  • 본 논문에서는 복부 CT 영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할 방법을 제안한다. 제안 방법은 다음의 세 단계로 구성된다. 첫째, 신실질의 다양한 형상정보를 이용하기 위해 피질기반 유사정합을 통한 다중 확률 아틀라스를 생성한다. 둘째, 최대사후확률 추정을 통해 그래프-컷의 초기 씨앗을 추출하고, 형상제한 그래프-컷을 통해 신실질을 분할한다. 셋째, 확률 아틀라스의 정합 오차를 줄이고 분할 정확도를 높이기 위해, 정합 및 분할을 반복적으로 수행한다. 제안방법의 성능을 평가하기 위해 정성적 평가 및 정량적 평가를 수행하였다. 실험결과 제안방법이 신실질과 유사한 밝기값을 갖는 주변 영역으로의 누출을 방지하여 개선된 분할 정확도를 보여준다.

무릎 자기공명영상에서 지역적 확률 아틀라스 정렬 및 반복적 그래프 컷을 이용한 전방십자인대 분할 (Anterior Cruciate Ligament Segmentation in Knee MRI with Locally-aligned Probabilistic Atlas and Iterative Graph Cuts)

  • 이한상;홍헬렌
    • 정보과학회 논문지
    • /
    • 제42권10호
    • /
    • pp.1222-1230
    • /
    • 2015
  • 무릎 자기공명영상에서 전방십자인대의 분할은 밝기값의 불균일성 및 주변 조직들과의 유사 밝기값 특성으로 인해 기존 분할기법의 적용에 한계가 있다. 본 논문에서는 지역적 정렬을 통한 확률아틀라스 생성 및 반복적 그래프 컷을 통한 다중아틀라스 기반 전방십자인대 분할기법을 제안한다. 첫째, 전역 및 지역적 다중아틀라스 강체정합을 통해 전방십자인대의 확률아틀라스를 생성한다. 둘째, 생성된 확률아틀라스를 이용하여 최대사후추정 및 그래프 컷을 통하여 전방십자인대 초기 분할을 수행한다. 셋째, 마스크 기반 강체정합을 통한 형상정보 개선 및 반복적 그래프 컷을 통해 전방십자인대 분할 개선을 수행한다. 제안방법의 성능평가를 위하여 육안평가 및 정확성평가를 수행하였으며, 평가 결과 제안방법의 Dice 유사도는 75.0%, 평균표면거리는 1.7화소, 제곱근표면거리는 2.7화소로서 기존 그래프 컷 방법에 비하여 전방 십자인대의 분할정확도가 각각 12.8%, 22.7%, 및 22.9% 향상된 것으로 나타났다.

복부 컴퓨터단층촬영 영상에서 다중 아틀라스 기반 위치적 정보를 사용한 계층적 장기 분할 (Hierarchical Organ Segmentation using Location Information based on Multi-atlas in Abdominal CT Images)

  • 김현진;김현아;이한상;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제19권12호
    • /
    • pp.1960-1969
    • /
    • 2016
  • In this paper, we propose an automatic hierarchical organ segmentation method on abdominal CT images. First, similar atlases are selected using bone-based similarity registration and similarity of liver, kidney, and pancreas area. Second, each abdominal organ is roughly segmented using image-based similarity registration and intensity-based locally weighted voting. Finally, the segmented abdominal organ is refined using mask-based affine registration and intensity-based locally weighted voting. Especially, gallbladder and pancreas are hierarchically refined using location information of neighbor organs such as liver, left kidney and spleen. Our method was tested on a dataset of 12 portal-venous phase CT data. The average DSC of total organs was $90.47{\pm}1.70%$. Our method can be used for patient-specific abdominal organ segmentation for rehearsal of laparoscopic surgery.

Optimization of Multi-Atlas Segmentation with Joint Label Fusion Algorithm for Automatic Segmentation in Prostate MR Imaging

  • Choi, Yoon Ho;Kim, Jae-Hun;Kim, Chan Kyo
    • Investigative Magnetic Resonance Imaging
    • /
    • 제24권3호
    • /
    • pp.123-131
    • /
    • 2020
  • Purpose: Joint label fusion (JLF) is a popular multi-atlas-based segmentation algorithm, which compensates for dependent errors that may exist between atlases. However, in order to get good segmentation results, it is very important to set the several free parameters of the algorithm to optimal values. In this study, we first investigate the feasibility of a JLF algorithm for prostate segmentation in MR images, and then suggest the optimal set of parameters for the automatic prostate segmentation by validating the results of each parameter combination. Materials and Methods: We acquired T2-weighted prostate MR images from 20 normal heathy volunteers and did a series of cross validations for every set of parameters of JLF. In each case, the atlases were rigidly registered for the target image. Then, we calculated their voting weights for label fusion from each combination of JLF's parameters (rpxy, rpz, rsxy, rsz, β). We evaluated the segmentation performances by five validation metrics of the Prostate MR Image Segmentation challenge. Results: As the number of voxels participating in the voting weight calculation and the number of referenced atlases is increased, the overall segmentation performance is gradually improved. The JLF algorithm showed the best results for dice similarity coefficient, 0.8495 ± 0.0392; relative volume difference, 15.2353 ± 17.2350; absolute relative volume difference, 18.8710 ± 13.1546; 95% Hausdorff distance, 7.2366 ± 1.8502; and average boundary distance, 2.2107 ± 0.4972; in parameters of rpxy = 10, rpz = 1, rsxy = 3, rsz = 1, and β = 3. Conclusion: The evaluated results showed the feasibility of the JLF algorithm for automatic segmentation of prostate MRI. This empirical analysis of segmentation results by label fusion allows for the appropriate setting of parameters.

무릎 MR 영상에서 다중 아틀라스 기반 지역적 가중 투표 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 (Automatic Meniscus Segmentation from Knee MR Images using Multi-atlas-based Locally-weighted Voting and Patch-based Edge Feature Classification)

  • 김순빈;김현진;홍헬렌;왕준호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권4호
    • /
    • pp.29-38
    • /
    • 2018
  • 본 논문에서는 무릎 MR 영상에서 반월상 연골의 자동 위치화, 다중 아틀라스 기반 지역적 가중 투표를 통한 반월상 연골 분할 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 방법을 제안한다. 첫째, 뼈와 무릎 관절 연골을 분할한 후 이를 이용하여 반월상 연골의 관심볼륨영역을 자동 위치화한다. 둘째, 반월상 연골의 관심볼륨영역에서 형상 및 밝기값 분포 가중치를 고려한 다중 아틀라스 기반 지역적 가중 투표를 통해 반월상 연골을 분할한다. 셋째, 밝기값이 유사한 측부 인대로의 누출을 제거하기 위해 형상 및 거리 가중치를 고려한 패치 기반 윤곽선 특징 분류를 통해 반월상 연골 분함을 개선한다. 제안 방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 내측 반월상 연골은 80.13%, 외측 반월상 연골은 80.81%를 보였으며 다중 아틀라스 기반 지역적 가중투표를 통한 분할 방법과 비교하여 내 측 및 외측 반월상 연 골 각각 7.25%, 1.31% 향상되었다.

CT Angiography 영상에서 대동맥 추출을 위한 혈관 분할 알고리즘 성능 평가 (Performance evaluation of vessel extraction algorithm applied to Aortic root segmentation in CT Angiography)

  • 김태형;황영상;신기영
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.196-204
    • /
    • 2016
  • 세계보건기구협회에의 통계에 따르면 심장 혈관 질환의 발병률이 가장 높은 것으로 알려져 있다. CTA영상을 사용하여 관상동맥 및 대동맥 질환을 치료 및 검사할 수 있다. 혈관을 3차원으로 복원하는 과정이 의사의 숙련도에 따라 결과가 상이하며 복원 시간이 길다는 단점이 있으며 이를 극복하고자 자동으로 정확한 혈관을 추출하는 연구들이 진행되어 왔다. 본 논문에서는 자동 및 반자동 분할 기법인 Region Competition, Geodesic Active Contour(GAC), Multi-atlas based segmentation, Active Shape Model(ASM) 알고리즘을 CTA영상에 적용하여 대동맥 기부를 추출하였으며 하우스도르프 거리, 볼륨, 영상처리속도, 사용자 관여 여부, 그리고 관상동맥 심문 검출률을 비교 및 분석하였다. 추출된 3차원 대동맥 모델 중 가장 높은 정확도를 나타낸 알고리즘은 GAC인 반면 사용자 관여가 가장 높았기 때문에 실제 시술에 적용하기 위해서는 자동 분할 알고리즘 개선이 필요하다