Journal of the Korean Society of Fisheries and Ocean Technology
/
v.57
no.3
/
pp.236-245
/
2021
In this study, a drifting test using a experimental vessel (2,966 tons) in the northern waters of Jeju was carried out for the first time in order to obtain the fundamental data for drift. During the test, it was shown that the average leeway speed and direction by GPS position were 0.362 m/s and 155.54° respectively and the leeway rate for wind speed was 8.80%. The analysis of linear regression modes about leeway speed and direction of the experimental vessel indicated that wind or current (i.e. explanatory variable) had a greater influence upon response variable (e.g. leeway speed or direction) with the speed of the wind and current rather than their directions. On the other hand, the result of multiple regression model analysis was able to predict that the direction was negative, and it was demonstrated that predicted values of leeway speed and direction using an experimental vessel is to be more influential by current than wind while the leeway speed through variance and covariance was positive. In terms of the leeway direction of the experimental vessel, the same result of the leeway speed appeared except for a possibility of the existence of multi-collinearity. Then, it can be interpreted that the explanatory variables were less descriptive in the predicted values of the leeway direction. As a result, the prediction of leeway speed and direction can be demonstrated as following equations. Ŷ1= 0.4031-0.0032X1+0.0631X2-0.0010X3+0.4110X4 Ŷ2= 0.4031-0.6662X1+27.1955X2-0.6787X3-420.4833X4 However, many drift tests using actual vessels and various drifting objects will provide reasonable estimations, so that they can help search and rescue fishing gears as well.
Journal of Korean Society for Atmospheric Environment
/
v.10
no.4
/
pp.224-232
/
1994
A new neural network model has been developed to predict short-term air pollution concentration. In addition, a multiple regression model widely used in statistical analysis was tested. These models were applied for prediction of daily maximum ozone concentration in Seoul during the summer season of 1991. The time periods between May and September 1989 and 1990 were utilized to train set of learning patterns in neural network model, and to estimate multiple regression model. To evaluate the results of the different models, several Performance indices were used. The results indicated that the multiple regression model tended to underpredict the daily maximum ozone concentration with small r$^{2}$(0.38). Also, large errors were found in this model; 21.1 ppb for RMSE, 0.324 for NMSE, and -0.164 for MRE. On the other hand, the results obtained from the neural network model were very promising. Thus, we can know that this model has a prominent efficiency in the adaptive control for the non-linear multi- variable systems such as photochemical oxidants. Also, when the recent new information was added in the neural network model, prediction accuracy was increased. From the new model, the values of RMSE, NMSE and r$^{2}$ were 13.2ppb, 0.089, 0.003 and 0.55 respectively.
International journal of advanced smart convergence
/
v.10
no.4
/
pp.206-214
/
2021
The purpose of this study is to identify the level of polypharmacy use, drug knowledge, and drug misuse behavior in the elderly, and to understand the correlation between them and their effect on drug misuse behavior. The study design was a descriptive survey study, and the participants of the study were 215 elderly people from the local community center. The research tool used drug knowledge, drug misuse behavior, and the data collection period was from February 8 to 19, 2021. The data analysis were descriptive statistics, t-test, one-way ANOVA, Pearson's correlation coefficient, and regression analysis. As a result of the study, a significant correlation variable for the drug knowledge of the elderly showed a significant correlation with prescription and non-prescription, r=.145 (p<0.05), and r=.-. 136, which showed a negative significant correlation (p<0.05). As for the significant correlation variable in the drug misuse behavior of the elderly, when prescription and non-prescription were combined, there was a significant correlation with r=.256 (p<0.01), and when not using drugs, r=.-.225 was negative. showed a significant correlation (p<0.01). In terms of the effect on drug misuse behavior, chronic disease =.145, prescription and non-prescription use = .233, which had a positive effect, and non-prescription = -.328, indicating a negative and significant effect. The provision of education on the safe use of drugs by the elderly should first be provided in the community. In addition, we need systematic education and social support for the transmission of correct knowledge on multi-drug use by the elderly and for health management.
Purpose - This paper investigates how business cycle impacts on corporate credit spreads since global financial crisis. Furthermore, it tests how the impact changes by the phase of the cycle. Design/methodology/approach - This study collected dataset from Barclays Global Aggregate Bond Index through the Bloomberg. It conducted multi-regression analysis by projecting business cycle using Hodrick-Prescott filtering and various cyclical variables, while ran dynamic analysis of 5-variable Vector Error Correction Model to confirm the robustness of the test. Findings - First, it proves to be statistically significant that corporate credit spreads have moved countercyclicaly since the crisis. Second, It indicates that the corporate credit spread's countercyclicality to the macroeconomic changes works symmetrically by the phase of the cycle. Third, the VECM supports that business cycle's impact on the spreads maintains more sustainably than other explanatory variable does in the model. Research implications or Originality - It becomes more appealing to accurately measure the real economic impact on corporate credit spreads as the interaction between credit and business cycle deepens. The economic impact on the spreads works symmetrically by boom and bust, which implies that the market stress could impact as another negative driver during the bust. Finally, the business cycle's sustainable impact on the spreads supports the fact that the economic recovery is the key driver for the resilience of credit cycle.
Le, Quang Hung;Nguyen, Luu Thanh Tan;Pham, Ngoc Tram Anh
The Journal of Asian Finance, Economics and Business
/
v.6
no.1
/
pp.195-203
/
2019
The study aims to identify Service Quality factors that affect purchase decision on Click and Collect service through the mediating variable of customer emotions at Mobile World stores in Ho Chi Minh City. This study employs a mixed methods research design. Data were collected through online self-completion questionnaire distributed to 316 customers who used to experience Click and Collect service at the Mobile World stores in Ho Chi Minh City, Vietnam. The theoretical model was tested through two-stage regression analysis (PATH model). The findings show that factors of service quality such as Reliability, Responsiveness, Assurance, Empathy, Tangibility, and Emotions affect the decision to purchase online and receive products directly at Mobile World stores in Ho Chi Minh City. Responsiveness and Assurance have a significant positive impact on the customer's emotions. Consequently, these factors should be considered and addressed when conducting multi-channel services. Obviously, employees must first be trained to be able to deliver the promise of the retailer to their customers. Based on the results of the study, the authors provide managerial implications for retailers in Vietnam in the multi-channel retail environment to develop Click and Collect at retail stores across the country and the world.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.5
/
pp.1035-1040
/
2024
The main objective of inspecting structures is to ensure the safety of all entities that utilize these structures as cracks in structures if not attended to could lead to serious calamities. With that objective in mind, artificial intelligence (AI) based technologies to assist human inspectors are needed especially for retaining walls in structures. In this paper, we predict the crack displacement of retaining walls using an Polynomial Regressive (PR) analysis model, as well as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) deep learning models, and compare their performance. For the performance comparison, we apply multi-variable feature inputs, by utilizing temperature and rainfall data that may affect the crack displacement of the retaining wall. The training and inference data were collected through measuring sensors such as inclinometers, thermometers, and rain gauges. The results show that the multi-variable feature model had a MAE of 0.00186, 0.00450 and 0.00842, which outperformed the single variable feature model at 0.00393, 0.00556 and 0.00929 for the polynomial regression model, LSTM model and the GRU model respectively from the evaluation performed.
Plasma information based virtual metrology (PI-VM) that predicts wafer-to-wafer etch rate variation after wet cleaning of plasma facing parts was developed. As input parameters, plasma information (PI) variables such as electron temperature, fluorine density and hydrogen density were extracted from optical emission spectroscopy (OES) data for etch plasma. The PI-VM model was trained by stepwise variable selection method and multi-linear regression method. The expected etch rate by PI-VM showed high correlation coefficient with measured etch rate from SEM image analysis. The PI-VM model revealed that the root cause of etch rate variation after the wet cleaning was desorption of hydrogen from the cleaned parts as hydrogen combined with fluorine and decreased etchant density and etch rate.
Purpose: Prior studies rarely investigated the effects of the Word of Mouse (WoM) information on consumers' motivation and willingness to purchase a product. Furthermore, few scholars have studied how word-of-mouth information works and they fail to find consistent results. Research design, data and methodology: This study uses a multivariate regression model to investigate the influence of WoM on consumer attitudes and consumer decision-making. It categorizes the quality of WoM into source level and acceptance level, to analyze its influence from a new perspective. A total of 400 surveys were completed, resulting in 336 usable questionnaires for analysis. It was collected in 14 cities from all regions in China. This study constructs a theoretical model of WoM influence on consumers' purchase willingness based on a systematic review of the related literature on WoM quality, perceived value, customer trust, and consumers' purchase willingness. Results: Empirical results reveal that the Internet WoM (consumer's source level and acceptance level) indirectly affects consumer behavior by influencing consumer attitudes. Conclusions: This study provides practical significance and value for merchants to develop better WoM marketing and to establish the reliability of WoM websites. Companies should consider online WoM from the perspective of consumers, thereby improving existing marketing strategies.
Drilling processes in fiber-reinforced polymer composites are essential for the assembly and fabrication of composite structural parts. The economic impact of rejecting the drilled part is significant considering the associated loss when it reaches the assembly stage. Therefore, this article tends to illustrate the effect of cutting conditions (feed and speed), and laminate thickness on thrust force, torque, and delamination in drilling woven E-glass fiber reinforced epoxy (GFRE) composites. Four feeds (0.025, 0.05, 0.1, and 0.2 mm/r) and three speeds (400, 800, and 1600 RPM) are exploited to drill square specimens of 36.6×36.6 mm, by using CNC machine model "Deckel Maho DMG DMC 1035 V, ecoline". The composite laminates with thicknesses of 2.6 mm, 5.3 mm, and 7.7 mm are constructed respectively from 8, 16, and 24 glass fiber layers with a fiber volume fraction of about 40%. The drilled specimen is scanned using a high-resolution flatbed color scanner, then, the image is analyzed using CorelDraw software to evaluate the delamination factor. Multi-variable regression analysis is performed to present the significant coefficients and contribution of each variable on the thrust force and delamination. Results illustrate that the drilling parameters and laminate thickness have significant effects on thrust force, torque, and delamination factor.
The evaluation and analysis method of information system (IS) is studied from the system perspective, the user perspective, and the management viewpoint. The detailed analysis method performs qualitative evaluation by user questionnaire or expert opinion. In this study, Measures the productivity and the effect of building administrative information systems. In the previous study, qualitative productivity and universal effect indicators were used, but in this study, quantitative productivity indicators and indicators specific to administrative complaints were selected. KONEPS, an administrative service system, used electronic contract records and information recorded in the intermediate process. The information was converted into the number of days, and the productivity based on the input manpower was calculated. The effect analysis analyzed the questionnaire related to civil affairs, which is the goal of the administrative work system. Each factor was divided into reflective structural variable and formal structural variable, and internal consistency and multi-collinearity were diagnosed. In order to verify the model, the influence of the work was set as a hypothesis, the reliability was verified according to the descriptive statistics method, the influence was measured through the regression analysis, and the model was analyzed by the multiple regression model path coefficient. Model validation methods are Chi-square (df, p), RMR, GFI, AGFI, NFI, CFI and GFI as indicators according to CFA.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.