• 제목/요약/키워드: Multi-Variable Regression Analysis

검색결과 122건 처리시간 0.024초

지역별 응급의료 접근성이 환자의 예후 및 응급의료비 지출에 미치는 영향 (Impact of Regional Emergency Medical Access on Patients' Prognosis and Emergency Medical Expenditure)

  • 김연진;이태진
    • 보건행정학회지
    • /
    • 제30권3호
    • /
    • pp.399-408
    • /
    • 2020
  • Background: The purpose of this study was to examine the impact of the regional characteristics on the accessibility of emergency care and the impact of emergency medical accessibility on the patients' prognosis and the emergency medical expenditure. Methods: This study used the 13th beta version 1.6 annual data of Korea Health Panel and the statistics from the Korean Statistical Information Service. The sample included 8,119 patients who visited the emergency centers between year 2013 and 2017. The arrival time, which indicated medical access, was used as dependent variable for multi-level analysis. For ordinal logistic regression and multiple regression, the arrival time was used as independent variable while patients' prognosis and emergency medical expenditure were used as dependent variables. Results: The results for the multi-level analysis in both the individual and regional variables showed that as the number of emergency medical institutions per 100 km2 area increased, the time required to reach emergency centers significantly decreased. Ordinal logistic regression and multiple regression results showed that as the arrival time increased, the patients' prognosis significantly worsened and the emergency medical expenses significantly increased. Conclusion: In conclusion, the access to emergency care was affected by regional characteristics and affected patient outcomes and emergency medical expenditure.

다수준 프레일티모형 변수선택법을 이용한 다기관 방광암 생존자료분석 (Analysis of multi-center bladder cancer survival data using variable-selection method of multi-level frailty models)

  • 김보현;하일도;이동환
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.499-510
    • /
    • 2016
  • 생존분석 회귀모형에서 적절한 변수를 선택하는 것은 매우 중요하다. 본 논문에서는 "frailtyHL" R 패키지 (Ha 등, 2012)를 기반으로 하여 다수준 프레일티 모형 (multi-level frailty models)에서 벌점화 변수선택 방법 (penalized variable-selection method)의 절차를 소개한다. 여기서 모형 추정은 벌점화 다단계 가능도에 기초하며, 세 가지 벌점 함수 (LASSO, SCAD 및 HL)가 고려된다. 개발된 방법의 예증을 위해 벨기에 EORTC (European Organization for Research and Treatment of Cancer; 유럽 암 치료기구)에서 수행된 다국가/다기관 임상시험 자료를 이용하여 세 가지 변수 선택 방법의 결과를 비교하고, 그 결과들의 상대적 장 단점에 대해 토론한다. 특히, 자료 분석 결과에 의하면 SCAD와 HL방법이 LASSO보다 중요한 변수를 잘 선택하는 것으로 나타났다.

임상의를 위한 다변량 분석의 실제 (Multivariate Analysis for Clinicians)

  • 오주한;정석원
    • Clinics in Shoulder and Elbow
    • /
    • 제16권1호
    • /
    • pp.63-72
    • /
    • 2013
  • 임상 의학의 연구에 사용되는 대표적 다변량 분석 방법은 다중 회귀 분석 방법인데, 이는 인과 관계를 토대로 여러 개의 변수에 의한 한꺼번에의 영향력을 분석하기 위한 방법이다. 다중 회귀 분석은 기본적으로 회귀 분석의 기본 가정을 만족해야 함은 물론, 여러 개의 독립 변수들이 포함되기 때문에 변수들을 모형에 포함시키는 방법 및 다중 공선성 문제에 대한 고려가 필요하다. 다중 회귀 분석 모형의 설명력은 결정 계수 $R^2$으로 표현되어 1에 가까울수록 설명력이 크며, 각 독립 변수들의 결과에의 영향력은 회귀 계수인 ${\beta}$값으로 표현된다. 다중 회귀 분석은 종속 변수의 형태에 따라 다중 선형 회귀 분석, 다중 로지스틱 회귀 분석, 콕스 회귀 분석으로 나눌 수 있다. 종속 변수가 연속 변수인 경우 다중 선형 회귀 분석, 범주형 변수인 경우 다중 로지스틱 회귀 분석, 시간의 영향을 고려한 상태 변수인 경우는 콕스 회귀 분석을 시행해야 하며, 각각 결과에의 영향력은 회귀 계수 ${\beta}$, 교차비, 위험비로 평가한다. 이러한 다변량 분석에 대한 이해는 연구를 계획하고 결과를 분석하고자 하는 임상 의사에게 있어 보다 효율적인 연구를 위해 필수적인 소양이라고 할 수 있다.

인적특성을 고려한 고령 운전자 교통사고 영향요인 분석 (Analysis of Old Driver's Accident Influencing Factors Considering Human Factors)

  • 김태호;김은경;노정현
    • 한국안전학회지
    • /
    • 제24권1호
    • /
    • pp.69-77
    • /
    • 2009
  • This paper reports the aging driver traffic accident severity modeling results. For the modeling, Poisson regression approach is applied using the data set obtained from the Korea Transportation Safety Authority's simulator-based driver aptitude test results. The test items include the estimations of moving objects' speed and stopping distance, drivers' multi-task capability, and kinetic depth perception and so on. The resulting model with the response variable of equivalent property damage only(EPDO) indicated that EPDO is significantly influenced by moving objects' speed estimation and drivers' multi-task capabilities. More interestingly, a comparison with the younger driver model revealed that the degradation of such capabilities may result in severer crashes for older drivers as suggested by the higher estimated parameters for the older driver model.

Data Segmentation for a Better Prediction of Quality in a Multi-stage Process

  • Kim, Eung-Gu;Lee, Hye-Seon;Jun, Chi-Hyuek
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권2호
    • /
    • pp.609-620
    • /
    • 2008
  • There may be several parallel equipments having the same function in a multi-stage manufacturing process, which affect the product quality differently and have significant differences in defect rate. The product quality may depend on what equipments it has been processed as well as what process variable values it has. Applying one model ignoring the presence of different equipments may distort the prediction of defect rate and the identification of important quality variables affecting the defect rate. We propose a procedure for data segmentation when constructing models for predicting the defect rate or for identifying major process variables influencing product quality. The proposed procedure is based on the principal component analysis and the analysis of variance, which demonstrates a better performance in predicting defect rate through a case study with a PDP manufacturing process.

  • PDF

MP-Lasso chart: a multi-level polar chart for visualizing group Lasso analysis of genomic data

  • Min Song;Minhyuk Lee;Taesung Park;Mira Park
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.48.1-48.7
    • /
    • 2022
  • Penalized regression has been widely used in genome-wide association studies for joint analyses to find genetic associations. Among penalized regression models, the least absolute shrinkage and selection operator (Lasso) method effectively removes some coefficients from the model by shrinking them to zero. To handle group structures, such as genes and pathways, several modified Lasso penalties have been proposed, including group Lasso and sparse group Lasso. Group Lasso ensures sparsity at the level of pre-defined groups, eliminating unimportant groups. Sparse group Lasso performs group selection as in group Lasso, but also performs individual selection as in Lasso. While these sparse methods are useful in high-dimensional genetic studies, interpreting the results with many groups and coefficients is not straightforward. Lasso's results are often expressed as trace plots of regression coefficients. However, few studies have explored the systematic visualization of group information. In this study, we propose a multi-level polar Lasso (MP-Lasso) chart, which can effectively represent the results from group Lasso and sparse group Lasso analyses. An R package to draw MP-Lasso charts was developed. Through a real-world genetic data application, we demonstrated that our MP-Lasso chart package effectively visualizes the results of Lasso, group Lasso, and sparse group Lasso.

다문화가족 청소년의 성별에 따른 주관적 구강증상경험의 비교 연구 (A comparative study of subjective oral symptom experiences according to gender in adolescents of multi-cultural families)

  • 박지영;정기옥
    • 한국치위생학회지
    • /
    • 제19권2호
    • /
    • pp.287-295
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate the factors affecting subjective oral symptoms according to the gender of youth from multi-cultural families in Korea using data from the 14th (2018) Korean Youth Health Behavior Survey. Methods: The independent variables used in this study consisted of gender and sweet drink intake. The dependent variable was experience of subjective oral symptoms. Compensation variables consisted of general characteristics of school type, academic performance, economic status, drinking status, smoking status, and number of tooth brushings day before. The subjects of the study were 835 children of multi-cultural families whose parents were foreigners. All statistical analyses were performed by complex samples cross-tabulation analysis and complex samples logistic regression analysis. Statistical analysis was performed using the PASW statistical package 21.0 (Statistical Packages for Social Science Inc., Chicago, IL, USA). A significance level of 0.05 was used for statistical significance. Results: The composite sample logistic regression analysis showed that there was a statistically significant difference between gender and intake of sweet drinks in experience of subjective oral symptoms. Conclusions: These results suggest that factors influence subjective oral symptoms in Korean multi-cultural adolescents. Therefore, I hope that they will be used as basic data for the introduction and development of a customized oral health education program for improving oral health of multi-cultural adolescents.

회귀 분석을 이용한 용접 변수와 이탈 액적 크기의 상호 관계 (Correlation between Welding Parameters and Detaching Drop Size using Regression)

  • 최상균;한창우;이상룡;이영문
    • Journal of Welding and Joining
    • /
    • 제20권1호
    • /
    • pp.83-90
    • /
    • 2002
  • Metal Transfer in gas metal arc (GMA) welding is a complex phenomenon affected by many parameters of the welding conditions and material properties. In this research, the correlation equation between the welding condition and detaching droplet size and detaching velocity in GMA welding was studied via recession analysis on the results of numerical analysis using the volume-of-fluid (VOF) method. Welding parameters and material properties were grouped into three dimensionless numbers and detaching droplet size was expressed as the function of them. Second order and exponential multi-variable correlation forms were assumed, and the coefficients of these equations were calculated for globular and spray modes as well as entire transfer modes. Applying correlation equation into available experimental data, it shows good agreement.

종합병원 정신건강의학과에 대한 공간적 접근성과 외래 의료이용 분석 (A Study on the Spatial Accessibility to the Psychiatry Department in General Hospital and Its Relationship with the Visit of Mental Patients)

  • 동재용;이광수
    • 보건행정학회지
    • /
    • 제27권4호
    • /
    • pp.315-323
    • /
    • 2017
  • Background: This study was purposed to analyze the effect of spatial accessibility to the psychiatry department in general hospital on the outpatient visit of mental patients. Methods: Data was provided from the Statistics Korea and Statistical Geographic Information Service, National Health Insurance Service, Health Insurance Review and Assessment Service, and Korea Transport Institute in 2015. The study regions were 103 administrative regions such as Si and Gu. The 103 regions had at least one general hospitals with a psychiatry department. The number of outpatient visit of mental patients in regions was used as the dependent variable. Spatial accessibility to mental general hospital was used as the independent variable. Control variables included such as demographic, economic, and health medical factors. This study used network analysis and multi-variate regression analysis. Network analysis by ArcGIS ver. 10.0 (ESRI, Redlands, CA, USA) was used to evaluate the average travel time and travel distance in Korea. Multi-variate regression analysis was conducted by SAS ver. 9.4 (SAS Institute Inc., Cary, NC, USA). Results: Travel distance and time had significant effects on the number of outpatient visits in mental patients in general hospital. Average travel time and travel distance had negative effects on the number of visits. Variables such as (number of total population, percentage of aged population over 65, and number of mental general hospital) had significant effects on the number of visit in mental patients. Conclusion: Health policy makers will need to consider the spatial accessibility to the mental healthcare organization in conducting regional health planning.

건구온파를 오인한 장기최대전력수요예측에 관한 연구 (Long-Term Maximum Power Demand Forecasting in Consideration of Dry Bulb Temperature)

  • 고희석;정재길
    • 대한전기학회논문지
    • /
    • 제34권10호
    • /
    • pp.389-398
    • /
    • 1985
  • Recently maximum power demand of our country has become to be under the great in fluence of electric cooling and air conditioning demand which are sensitive to weather conditions. This paper presents the technique and algorithm to forecast the long-term maximum power demand considering the characteristics of electric power and weather variable. By introducing a weather load model for forecasting long-term maximum power demand with the recent statistic data of power demand, annual maximum power demand is separated into two parts such as the base load component, affected little by weather, and the weather sensitive load component by means of multi-regression analysis method. And we derive the growth trend regression equations of above two components and their individual coefficients, the maximum power demand of each forecasting year can be forecasted with the sum of above two components. In this case we use the coincident dry bulb temperature as the weather variable at the occurence of one-day maximum power demand. As the growth trend regression equation we choose an exponential trend curve for the base load component, and real quadratic curve for the weather sensitive load component. The validity of the forecasting technique and algorithm proposed in this paper is proved by the case study for the present Korean power system.

  • PDF