• Title/Summary/Keyword: Multi-UAV System

Search Result 94, Processing Time 0.024 seconds

Human-in-the-loop experiments design for workload effectiveness verification of multiple-UAV operators (복수무인기 운용자의 임무과부하지표 효용성 검증을 위한 human-in-the-loop 실험 설계 및 구현)

  • Lim, Hyung-Jin;Choi, Seong-Hwan;Shin, Eun-Chul;Oh, Jang-Jin;Kim, Byoung Soo;Kim, Seungkeun;Yang, Ji Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.284-291
    • /
    • 2017
  • There is no doubt that advances in UAV technology have improved military performance. However, these advances require humans to adapt to new and complex operational systems. UAV has been rapidly expanding to a variety of fields such as reconnaissance, transportation, communication and aerial photographing recently. Also, with the development of UAV automation technology, one operator is able to supervisory-control multiple-UAVs. However, as the number of assigned UAV increases, the amount of information increases and this results in the workload of the operator increasing and deterioration in controlling performance. Accordingly, there is a need for a model to determine the level of overload an operator may encounter with regard to multiple-UAV but nationally this kind of research is currently lacking. Therefore, this paper provides an experimental platform for evaluating workload index effectiveness integrating multiple-UAV operational environments, GCS, and eye-tracking system followed by a limited survey of domestic and international studies of multi-UAV overload studies.

Vision-Based Trajectory Tracking Control System for a Quadrotor-Type UAV in Indoor Environment (실내 환경에서의 쿼드로터형 무인 비행체를 위한 비전 기반의 궤적 추종 제어 시스템)

  • Shi, Hyoseok;Park, Hyun;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.47-59
    • /
    • 2014
  • This paper deals with a vision-based trajectory tracking control system for a quadrotor-type UAV for entertainment purpose in indoor environment. In contrast to outdoor flights that emphasize the autonomy to complete special missions such as aerial photographs and reconnaissance, indoor flights for entertainment require trajectory following and hovering skills especially in precision and stability of performance. This paper proposes a trajectory tracking control system consisting of a motion generation module, a pose estimation module, and a trajectory tracking module. The motion generation module generates a sequence of motions that are specified by 3-D locations at each sampling time. In the pose estimation module, 3-D position and orientation information of a quadrotor is estimated by recognizing a circular ring pattern installed on the vehicle. The trajectory tracking module controls the 3-D position of a quadrotor in real time using the information from the motion generation module and pose estimation module. The proposed system is tested through several experiments in view of one-point, multi-points, and trajectory tracking control.

Multi-UAV Formation Based on Feedback Linearization Technique Using Range-Only Measurement (거리 정보를 이용한 되먹음 선형화 기법 무인기 편대 비행제어)

  • Kim, Sung-Hwan;Ryoo, Chang-Kyung;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • This paper addresses how to make a formation of multiple unmanned aerial vehicles (UAVs) using only the relative range information. Since the relative range can easily be measured by an on-board range sensor like the laser range finder, the proposed method does not require any expensive and heavy wireless communication system to share the navigation information of each vehicle. Based on the two-dimensional (2-D) nonlinear equations of motion, we propose a nonlinear formation controller using the typical input-output feedback linearization method. The performance of the proposed formation controller is verified by various numerical simulations.

DEVS-based Digital Twin Simulation Environment Modeling for Alternative Route Selection in Emergency Situations of Unnamed Aerial Vehicles (무인비행체의 유사시 대안 경로 선택을 위한 DEVS 기반 디지털 트윈 시뮬레이션 환경 모델링)

  • Kwon, Bo Seung;Jung, Sang Won;Noh, Young Dan;Lee, Jong Sik;Han, Young Shin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1007-1021
    • /
    • 2022
  • Autonomous driving of unmanned aerial vehicles may have to pay expensive cost to create and switch new routes if unexpected obstacles exist or local map updates occured by the control system due to incorrect route information. Integrating digital twins into the path-following process requires more computing resources to quickly switch the wrong path to an alternative path, but it can quickly update the path during flight. In this study, we design a DEVS-based simulation environment which can modify optimized paths through short-term simulation of multi-virtual UAVs for applying digital twin concepts to path follow. Through simulation, we confirmed the possibility of increasing the mission stability of UAV.

Lateral and Directional SCAS Controller Design Using Multidisciplinary Optimization Program (통합 최적화 프로그램을 이용한 횡운동 SCAS 제어기 설계)

  • Lee, Sang-Jong;Lee, Jang-Ho;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • The flight controller should meet the flying qualities, stability margins, and time response requirement according to the class of a target aircraft or UAV. Classical design process of PID controller is a very time consuming process and needed trial and erros. The best way is to apply the multi-disciplinary optimization algorithm to meet the numerous constraints of controller requirements. This paper presents how multi-objective parameter optimization (CONDUIT) can be used to determine many design parameters of lateral stability and augmentation system for roll and heading controller of the small UAV. To verify the effectiveness of applying the optimization method, designed controller using optimization are compared with the baseline controller that is designed only considering the time responses.

Orthophoto and DEM Generation Using Low Specification UAV Images from Different Altitudes (고도가 다른 저사양 UAV 영상을 이용한 정사영상 및 DEM 제작)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • Even though existing methods for orthophoto production using expensive aircraft are effective in large areas, they are drawbacks when dealing with renew quickly according to geographic features. But, as UAV(Unmanned Aerial Vehicle) technology has advanced rapidly, and also by loading sensors such as GPS and IMU, they are evaluates that these UAV and sensor technology can substitute expensive traditional aerial photogrammetry. Orthophoto production by using UAV has advantages that spatial information of small area can be updated quickly. But in the case of existing researches, images of same altitude are used in orthophoto generation, they are drawbacks about repetition of data and renewal of data. In this study, we targeted about small slope area, and by using low-end UAV, generated orthophoto and DEM(Digital Elevation Model) through different altitudinal images. The RMSE of the check points is σh = 0.023m on a horizontal plane and σv = 0.049m on a vertical plane. This maximum value and mean RMSE are in accordance with the working rule agreement for the aerial photogrammetry of the National Geographic Information Institute(NGII) on a 1/500 scale digital map. This paper suggests that generate orthophoto of high accuracy using a different altitude images. Reducing the repetition of data through images of different altitude and provide the informations about the spatial information quickly.

Strategic Cattle Roundup using Multiple Quadrotor UAVs

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.315-326
    • /
    • 2017
  • Four quadrotor UAVs are maneuvered to guide four animals into their pen within the minimum time by creating noises of predators modeled with an exponential function. The quadrotor UAVs are controlled via PID controllers, follow time optimal trajectories, and avoid collisions through altitude separations. The stability of the proposed PID controller is analyzed and verified using MATLAB/Simulink based simulations. Proposed step by step strategies would be practical solutions of actual cattle roundup problems.

A Study on Green Algae Monitoring in Watershed Using Fixed Wing UAV (고정익 무인비행기를 이용한 수계 내 녹조 모니터링 연구)

  • Park, Jung-Il;Choi, Seung-Young;Park, Min-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.164-169
    • /
    • 2017
  • The primary purpose of this study is to determine NDVI analysis methodologies for green algae monitoring system. A fixed wing UAV integrated with multi-spectral sensor has been adopted to capture the images along the watershed in Gumgang River. The study area was near the Baekje water reservoir and the images was captured on July 2016. Pix4D Mapper Pro was used to process the captured images. Through the comparison actual chlorophyll measurement values with NDVI output image, empirical formula was suggested and geo-locational conversion was carried out. As a result of this study chlorophyll image set applied to actual measurement values was able to extracted. For the efficient management of green algae, its monitoring and prevention in terms of disaster management, gathering chlorophyll information using UAV is very beneficial.

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.

Conceptual Design of Bevel Gear-based Leveling Station for Take-off and Landing of Unmanned Aerial Vehicles (무인 항공기 이착륙을 위한 베벨 기어 기반 수평 유지 스테이션의 개념 설계)

  • Hahm, Jehun;Park, Sanghyun;Jeong, Myungsu;Kim, Sang Ho;Lee, Jaeyoul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.655-662
    • /
    • 2022
  • Recently, with the increase in the use of UAV(unmanned aerial vehicles), research on horizontal maintenance stations that can take off and land in various environments has been actively conducted. These stations can safely land UAV through multiple DOF(degrees of freedom) or at least 2-DOF-based actuator actuation. Among them, many researchers are dealing with the multi-DOF stewart platform due to its high safety. However, the stewart platform requires high-precision control technology because it requires a lot of torque to actuate according to the load action. Therefore, in this paper, to solve the mentioned problem, a bevel gear-based 2-DOF horizontal maintenance station system is proposed. The proposed system is configured to prevent damage due to air resistance when maintaining ships and to install it in a small space. Also, in terms of system configuration, the bevel gear-based horizontal maintenance system has the main advantage of being able to take off and land UAVs of various sizes through the replacement of station pads. The driving of the system consists of a simple form that can control the motor by adjusting the rotation speed of the motor according to the sea waveform.