• Title/Summary/Keyword: Multi-Target Extraction

Search Result 44, Processing Time 0.02 seconds

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

Ground Target Classification Algorithm based on Multi-Sensor Images (다중센서 영상 기반의 지상 표적 분류 알고리즘)

  • Lee, Eun-Young;Gu, Eun-Hye;Lee, Hee-Yul;Cho, Woong-Ho;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.195-203
    • /
    • 2012
  • This paper proposes ground target classification algorithm based on decision fusion and feature extraction method using multi-sensor images. The decisions obtained from the individual classifiers are fused by applying a weighted voting method to improve target recognition rate. For classifying the targets belong to the individual sensors images, features robust to scale and rotation are extracted using the difference of brightness of CM images obtained from CCD image and the boundary similarity and the width ratio between the vehicle body and turret of target in FLIR image. Finally, we verity the performance of proposed ground target classification algorithm and feature extraction method by the experimentation.

Development of Intelligent Surveillance System Using Stationary Camera for Multi-Target-Based Object Tracking (다중영역기반의 객체추적을 위한 고정형 카메라를 이용한 지능형 감시 시스템 개발)

  • Im, Jae-Hyun;Kim, Tae-Kyung;Choi, Kwang-Yong;Han, In-Kyo;Paik, Joon-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.789-790
    • /
    • 2008
  • In this paper, we introduce the multi-target-based auto surveillance algorithm. Multi-target-based surveillance system detects intrusion objects in the specified areas. The proposed algorithm can divide into two parts: i) background generation, ii) object extraction. In this paper, one of the optical flow equation methods for estimation of gradient method used to generate the background [2]. In addition, the objects and back- ground video images that are continually entering the differential extraction.

  • PDF

Multi-aspect Based Active Sonar Target Classification (다중 자세각 기반의 능동소나 표적 식별)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1775-1781
    • /
    • 2016
  • Generally, in the underwater target recognition, feature vectors are extracted from the target signal utilizing spatial information according to target shape/material characteristics. In addition, various signal processing techniques have been studied to extract feature vectors which are less sensitive to the location of the receiver. In this paper, we synthesized active echo signals using 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to echo signals to extract signal features. For the performance verification, classification experiments were performed using backpropagation and probabilistic neural network classifiers based on single aspect and multi-aspect method. As a result, we obtained a better recognition result using proposed feature extraction and multi-aspect based method.

hardware implementation of multi-target tracking system based on binary phase extraction JTC (BPEJTC를 이용한 다중표적 추적시스템의 하드웨어 구현)

  • 이승현;이상이;류충상;차광훈;서춘원;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.152-159
    • /
    • 1996
  • We have designed and implemented an optoelectronic hardware of binary phase extraction joint transform correlator (BPEJTC) which provides higher peak-to-sidelobe ratio than many other versions of JTC that has been published so far and does not produce correlation peaks due to intra-class association, to construct a multi-target tracking system. The digital processing unit controlling the entire system plays the part of modifying and binarizing the joint transform power spectrum (JTPS) and the optical processing unit is mainly used to take fourier transform operations. Some experimental results conducted by designed system along with its architecture showed the processing rate of 6 frames per second, thereby the potential applicability of the proposed system to real-time multitarget tracking system is given.

  • PDF

A Multi-category Task for Bitrate Interval Prediction with the Target Perceptual Quality

  • Yang, Zhenwei;Shen, Liquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4476-4491
    • /
    • 2021
  • Video service providers tend to face user network problems in the process of transmitting video streams. They strive to provide user with superior video quality in a limited bitrate environment. It is necessary to accurately determine the target bitrate range of the video under different quality requirements. Recently, several schemes have been proposed to meet this requirement. However, they do not take the impact of visual influence into account. In this paper, we propose a new multi-category model to accurately predict the target bitrate range with target visual quality by machine learning. Firstly, a dataset is constructed to generate multi-category models by machine learning. The quality score ladders and the corresponding bitrate-interval categories are defined in the dataset. Secondly, several types of spatial-temporal features related to VMAF evaluation metrics and visual factors are extracted and processed statistically for classification. Finally, bitrate prediction models trained on the dataset by RandomForest classifier can be used to accurately predict the target bitrate of the input videos with target video quality. The classification prediction accuracy of the model reaches 0.705 and the encoded video which is compressed by the bitrate predicted by the model can achieve the target perceptual quality.

Infrared Target Recognition using Heterogeneous Features with Multi-kernel Transfer Learning

  • Wang, Xin;Zhang, Xin;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3762-3781
    • /
    • 2020
  • Infrared pedestrian target recognition is a vital problem of significant interest in computer vision. In this work, a novel infrared pedestrian target recognition method that uses heterogeneous features with multi-kernel transfer learning is proposed. Firstly, to exploit the characteristics of infrared pedestrian targets fully, a novel multi-scale monogenic filtering-based completed local binary pattern descriptor, referred to as MSMF-CLBP, is designed to extract the texture information, and then an improved histogram of oriented gradient-fisher vector descriptor, referred to as HOG-FV, is proposed to extract the shape information. Second, to enrich the semantic content of feature expression, these two heterogeneous features are integrated to get more complete representation for infrared pedestrian targets. Third, to overcome the defects, such as poor generalization, scarcity of tagged infrared samples, distributional and semantic deviations between the training and testing samples, of the state-of-the-art classifiers, an effective multi-kernel transfer learning classifier called MK-TrAdaBoost is designed. Experimental results show that the proposed method outperforms many state-of-the-art recognition approaches for infrared pedestrian targets.

Depth tracking of occluded ships based on SIFT feature matching

  • Yadong Liu;Yuesheng Liu;Ziyang Zhong;Yang Chen;Jinfeng Xia;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1066-1079
    • /
    • 2023
  • Multi-target tracking based on the detector is a very hot and important research topic in target tracking. It mainly includes two closely related processes, namely target detection and target tracking. Where target detection is responsible for detecting the exact position of the target, while target tracking monitors the temporal and spatial changes of the target. With the improvement of the detector, the tracking performance has reached a new level. The problem that always exists in the research of target tracking is the problem that occurs again after the target is occluded during tracking. Based on this question, this paper proposes a DeepSORT model based on SIFT features to improve ship tracking. Unlike previous feature extraction networks, SIFT algorithm does not require the characteristics of pre-training learning objectives and can be used in ship tracking quickly. At the same time, we improve and test the matching method of our model to find a balance between tracking accuracy and tracking speed. Experiments show that the model can get more ideal results.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

FLIR and CCD Image Fusion Algorithm Based on Adaptive Weight for Target Extraction (표적 추출을 위한 적응적 가중치 기반 FLIR 및 CCD 센서 영상 융합 알고리즘)

  • Gu, Eun-Hye;Lee, Eun-Young;Kim, Se-Yun;Cho, Woon-Ho;Kim, Hee-Soo;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.291-298
    • /
    • 2012
  • In automatic target recognition(ATR) systems, target extraction techniques are very important because ATR performance depends on segmentation result. So, this paper proposes a multi-sensor image fusion method based on adaptive weights. To incorporate the FLIR image and CCD image, we used information such as the bi-modality, distance and texture. A weight of the FLIR image is derived from the bi-modality and distance measure. For the weight of CCD image, the information that the target's texture is more uniform than the background region is used. The proposed algorithm is applied to many images and its performance is compared with the segmentation result using the single image. Experimental results show that the proposed method has the accurate extraction performance.