• Title/Summary/Keyword: Multi-Target

Search Result 1,406, Processing Time 0.033 seconds

Topology Optimization of Beam Splitter for Multi-Beam Forming Based on the Phase Field Design Method (페이즈 필드 설계법 기반의 다중 빔 형성을 위한 빔 분배기 위상최적설계)

  • Kim, Han-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this paper, a systematic beam splitter design for multi-beam forming is proposed. The objective of this research is to a design beam splitter that splits and focuses scattering microwaves into intense beams in multiple directions. It is difficult to split multi-beam to non-specific directions with theoretical approaches. Therefore, instead of using transformation optics(TO), which is a widely used process for controlling electromagnetic wave propagation, we used a systematic design process called the phase field design method to obtain an optimal topological structure of beam splitter. The objective function is to maximize the norm of electric field of the target areas of each direction. To avoid island structure and obtain the structure in one body, volume constraint is added to the optimization problem by using augmented Lagrangian. Target frequency is set to X-band 10GHz. The optimal beam splitter performed well in multi-beam forming and the transported electric energy of target areas improved. A frequency dependency test was conducted in the X-band to determine effective frequency range.

Quadrilateral mesh fitting that preserves sharp features based on multi-normals for Laplacian energy

  • Imai, Yusuke;Hiraoka, Hiroyuki;Kawaharada, Hiroshi
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.88-95
    • /
    • 2014
  • Because the cost of performance testing using actual products is expensive, manufacturers use lower-cost computer-aided design simulations for this function. In this paper, we propose using hexahedral meshes, which are more accurate than tetrahedral meshes, for finite element analysis. We propose automatic hexahedral mesh generation with sharp features to precisely represent the corresponding features of a target shape. Our hexahedral mesh is generated using a voxel-based algorithm. In our previous works, we fit the surface of the voxels to the target surface using Laplacian energy minimization. We used normal vectors in the fitting to preserve sharp features. However, this method could not represent concave sharp features precisely. In this proposal, we improve our previous Laplacian energy minimization by adding a term that depends on multi-normal vectors instead of using normal vectors. Furthermore, we accentuate a convex/concave surface subset to represent concave sharp features.

The Effect of Non-uniform Superheat on the Performance of a Multi-path Evaporator (다중 유로에서 과열도의 불균형에 따른 증발기의 성능 특성에 관한 연구)

  • 최종민;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1043-1048
    • /
    • 2003
  • An experimental investigation was executed to determine the capacity degradation due to non-uniform refrigerant distribution in a multi-path evaporator. In addition, the possibility of recovering the capacity reduction by controlling the refrigerant distribution among refrigerant paths was assessed. The finned-tube evaporator, which had a three-path and three-depth-row, was tested by controlling inlet quality, exit pressure, and exit superheat for each refrigerant path. The capacity reduction due to superheat unbalance between each path was as much as 30%, even when the overall evaporator superheat was kept at a target value of 5.6$^{\circ}C$. It may indicate that the internal heat transfer within the evaporator assembly caused the partial capacity drop. For the evaporator having air mal-distributions, the maximum capacity reduction was found to be 8.7%. A 4.5% capacity recovery was obtained by controlling refrigerant distribution to obtain the target superheat at the outlet of each path.

Development of Vegetation Structure Measurement System using Multi-angle Stereo pair Images

  • DEMIZU Masaki;KAJIWARA Koji;HONDA Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.170-173
    • /
    • 2004
  • When the data from the artificial satellite is analyzed, recent years it is perceived to vegetation index using BRF(Bi-directional Reflectance Factor) of the observation target. To make the BRF models, it is important to measure the 3D structure of the observation target actually. In this study, it is proposed to the observation technique by using multi-angle stereo pair image, and shown the observation result in grassland area. Also, our team has been operating the radio controlled helicopter which can fly over the tall forest canopy and it can be equipped the measurement system.

  • PDF

Data Association and Its Applications to Intelligent Systems: A Review (데이터 연관 문제와 지능시스템에서의 응용: 리뷰)

  • Oh, Song-Hwai
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • Data association plays an important role in intelligent systems. This paper presents the Bayesian formulation of data association and its applications to intelligent systems. We first describe the Bayesian formulation of data association developed for solving multi-target tracking problems in a cluttered environment. Then we review applications of data association in intelligent systems, including surveillance using wireless sensor networks, identity management for air traffic control, camera network localization, and multi-sensor fusion.

A Study on Servo Motor Control in Multi Pallet System (다중 팔렛 시스템에 사용되는 서보 모터의 제어에 관한 연구)

  • Oh, Hyun-Woo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.339-346
    • /
    • 2019
  • Multi-axis servo systems are widely used in various fields such as industiral systems for improving production efficiency, robotics and complex systems where many mechanical devices and sensor systems are connected. Such a servo system requires that the servo control technique to realize the synchronization of the drive shaft in the steady state and transient conditions and to control so as to follow the target track in order to improve product precision and production efficiency. In addition, embedded type hardware is required for smooth control of the entire multi-axis system. Therefore, this paper uses hardware based on FPGA which is widely used in digital signal processing field and various control system because hardware design change is easy and parallel processing is possible. In addition, Labview based servo motor control program was studied that can control the servo motor by ensuring the performance and flexibility of the FPGA and follow the target trajectory according to various speed processing and accurate timing synchronization.

Efficient Process Network Implementation of Ray-Tracing Application on Heterogeneous Multi-Core Systems

  • Jung, Hyeonseok;Yang, Hoeseok
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.289-293
    • /
    • 2016
  • As more mobile devices are equipped with multi-core CPUs and are required to execute many compute-intensive multimedia applications, it is important to optimize the systems, considering the underlying parallel hardware architecture. In this paper, we implement and optimize ray-tracing application tailored to a given mobile computing platform with multiple heterogeneous processing elements. In this paper, a lightweight ray-tracing application is specified and implemented in Kahn process network (KPN) model-of-computation, which is known to be suitable for the description of real-time applications. We take an open-source C/C++ implementation of ray-tracing and adapt it to KPN description in the Distributed Application Layer framework. Then, several possible configurations are evaluated in the target mobile computing platform (Exynos 5422), where eight heterogeneous ARM cores are integrated. We derive the optimal degree of parallelism and a suitable distribution of the replicated tasks tailored to the target architecture.

The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Theater Ballistic Missile Defense (복합-휴리스틱 알고리즘을 이용한 지대공 유도무기(SAM) 최적배치 방안 : 탄도미사일 방어를 중심으로)

  • Lee, Jae-Yeong;Kwak, Ki-Hoon
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.262-273
    • /
    • 2008
  • In Korean peninsular, Air Defense with SAM(Surface-to-Air Missile) is very important, because of threatening by North Korea's theater ballistic missiles installed with nuclear or biochemistry. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Multi-heuristic algorithm which can handle both factors simultaneously for solving allocation problem of the batteries and missile assignment problem in each battery. To solve allocation problem, genetic algorithm is used to decide location of the batteries. To solve missile assignment problem, a heuristic algorithm is applied to determine the number of SAM for each target. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of missile defense operations.

Visual Tracking using Weighted Discriminative Correlation Filter

  • Song, Tae-Eun;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.49-57
    • /
    • 2016
  • In this paper, we propose the novel tracking method which uses the weighted discriminative correlation filter (DCF). We also propose the PSPR instead of conventional PSR as tracker performance evaluation method. The proposed tracking method uses multiple DCF to estimates the target position. In addition, our proposed method reflects more weights on the correlation response of the tracker which is expected to have more performance using PSPR. While existing multi-DCF-based tracker calculates the final correlation response by directly summing correlation responses from each tracker, the proposed method acquires the final correlation response by weighted combining of correlation responses from the selected trackers robust to given environment. Accordingly, the proposed method can provide high performance tracking in various and complex background compared to multi-DCF based tracker. Through a series of tracking experiments for various video data, the presented method showed better performance than a single feature-based tracker and also than a multi-DCF based tracker.

An Analysis of Multi-path Propagation Characteristics Using DTM : Considering Slope of the Ground Surface (DTM을 이용한 다중경로 전파특성 분석 : 지면의 경사를 고려한 해석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Kim, Min-Nyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.71-78
    • /
    • 2007
  • We suggest a multi-path propagation analysis method using DTM(Digital Terrain Map). Generally, the total signal strength at a target is calculated by adding the field propagated in free space and the field reflected from the ground surface. In this paper, we also consider the vertical reflections associated with the vertical surfaces such as precipitous cliffs and electricity pylons in the mountain area. In addition, we primarily take account the main slope of the ground surface to improve the accuracy of the total field density at the target.