• Title/Summary/Keyword: Multi-Robot Warehouse Environment

Search Result 2, Processing Time 0.022 seconds

Intelligent Warehousing: Comparing Cooperative MARL Strategies

  • Yosua Setyawan Soekamto;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.205-211
    • /
    • 2024
  • Effective warehouse management requires advanced resource planning to optimize profits and space. Robots offer a promising solution, but their effectiveness relies on embedded artificial intelligence. Multi-agent reinforcement learning (MARL) enhances robot intelligence in these environments. This study explores various MARL algorithms using the Multi-Robot Warehouse Environment (RWARE) to determine their suitability for warehouse resource planning. Our findings show that cooperative MARL is essential for effective warehouse management. IA2C outperforms MAA2C and VDA2C on smaller maps, while VDA2C excels on larger maps. IA2C's decentralized approach, focusing on cooperation over collaboration, allows for higher reward collection in smaller environments. However, as map size increases, reward collection decreases due to the need for extensive exploration. This study highlights the importance of selecting the appropriate MARL algorithm based on the specific warehouse environment's requirements and scale.

Cooperative Multi-agent Reinforcement Learning on Sparse Reward Battlefield Environment using QMIX and RND in Ray RLlib

  • Minkyoung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • Multi-agent systems can be utilized in various real-world cooperative environments such as battlefield engagements and unmanned transport vehicles. In the context of battlefield engagements, where dense reward design faces challenges due to limited domain knowledge, it is crucial to consider situations that are learned through explicit sparse rewards. This paper explores the collaborative potential among allied agents in a battlefield scenario. Utilizing the Multi-Robot Warehouse Environment(RWARE) as a sparse reward environment, we define analogous problems and establish evaluation criteria. Constructing a learning environment with the QMIX algorithm from the reinforcement learning library Ray RLlib, we enhance the Agent Network of QMIX and integrate Random Network Distillation(RND). This enables the extraction of patterns and temporal features from partial observations of agents, confirming the potential for improving the acquisition of sparse reward experiences through intrinsic rewards.