• Title/Summary/Keyword: Multi-PECVD

Search Result 43, Processing Time 0.028 seconds

Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source

  • Choi, Min-Jun;Kwon, O Dae;Choi, Sang Dae;Baek, Ju-Yeoul;An, Kyoung-Joon;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.25 no.4
    • /
    • pp.73-76
    • /
    • 2016
  • Multi-layer films of $SiN_x/SiO_x$/InSnO with anti-reflective effect were grown by new-concept plasma enhanced chemical vapor deposition system (PECVD) with hybrid plasma source (HPS). Anti-reflective effect of $SiN_x/SiO_x$/InSnO was investigated as a function of ratio of $SiN_x$ and $SiO_x$ thickness. Multi-layers deposited by PECVD with HPS represents the enhancement of anti-reflective effect with high transmittance, comparing to the layers by conventional radio frequency (RF) sputtering system. This change is strongly related to the optical and physical properties of each layer, such as refractive index, composition, film density, and surface roughness depending on the deposition system.

Plasma-polymerized Styrene Prganic thin Film as Hybrid OLEDs Encapsulation (플라즈마 중합된 Styrene을 유기박막으로 사용한 하이브리드형 OLED 봉지기술)

  • Jung, Kun-Soo;Lee, Boong-Joo;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1412-1416
    • /
    • 2014
  • We report thin-film organic moisture barriers based on polystyrene(PS) laminates deposition by PECVD for an encapsulation of OLEDs. The organic polystyrene thin-film has the benzene ring structure and high hydrophobic characteristics and it was polymerized by PECVD in dry process. Life time properties of Ca test were obtained 32 minutes at the RF 100W process conditions. From the AFM test, the roughness of multi-layer thin-film was more excellent rather than that of a single-layer thin-film. In addition, 5 layers of the multi-layer film properties were obtained 45 minutes. So that the optical and electrical properties were not affected with these plasma polymerized organic thin-film encapsulation. For life time improvement, the inorganic $Al_2O_3$ thin-film were deposited 5nm using ALD atomic layer deposition. The WVTR(Water Vaper Transmission Rate) value of hybrid thin-film encapsulation in the optimum process conditions was resulted by less than $10-3g/m^2/day$. From the results of experiment, plasma polymerized hybrid encapsulation was suggested as the flexible display applications.

Electrical properities of oxynitride film by PECVD (PECVD에 의해 형성된 oxynitride막의 전기적 특성)

  • 최현식;배성식;서용진;김창일;최동진;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.97-102
    • /
    • 1993
  • According as the high integrity of the semi conductor devices is definited required, the concern on the multi-layered wiring, and three-dimensional devices is growing these days. Therefore, plasma-enhanced chemical vapored deposition(PECVD) enables low-teperature process and is widely used, but it causes the instability of the devices due to a lot of impurities within the film. The PECVD oxynitride was formed by changing the gas ratio of (N$_2$O) to (N$_2$+NH$_3$). It's contained a small portion of hydrogen, had higher refrctive index and capacitance than oxide, and showed the capacitance increasement and the chemical stabi1ity. This is caused by nitrogen distribution increase of the interface lather than within the film.

  • PDF

Effect of a Multi-Step Gap-Filling Process to Improve Adhesion between Low-K Films and Metal Patterns

  • Lee, Woojin;Kim, Tae Hyung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.427-429
    • /
    • 2016
  • A multi-step deposition process for the gap-filling of submicrometer trenches using dimethyldimethoxysilane (DMDMOS), $(CH_3)_2Si(OCH_3)_2$, and $C_xH_yO_z$ by plasma enhanced chemical vapor deposition (PECVD) is presented. The multi-step process consisted of pre-treatment, deposition, and post-treatment in each deposition step. We obtained low-k films with superior gap-filling properties on the trench patterns without voids or delamination. The newly developed technique for the gap-filling of submicrometer features will have a great impact on inter metal dielectric (IMD) and shallow trench isolation (STI) processes for the next generation of microelectronic devices. Moreover, this bottom up gap-fill mode is expected to be universally for other chemical vapor deposition systems.

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

Poly-Si Thin Film and Solar Cells by VHF-PECVD (VHF-PECVD를 이용한 다결정 실리콘 박막 증착 및 태양전지 제조)

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Youn, K.H.;Park, I.J.;Song, J.S.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.995-998
    • /
    • 2003
  • This paper presents the deposition of poly-Si thin-film and fabrication of a solar cell by VHF-PECVD method. The poly-Si thin films. and pin-type solar cells are fabricated using multi-chamber cluster tool system. A 7.4% conversion efficiency was achieved from poly-Si thin film solar cells with total thickness less than $5{\mu}m$. The physical characteristic was measured by Raman spectroscopy, solar cell characteristic was measured under AM1.5 illumination.

  • PDF

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Silicon Nitride Layer Deposited at Low Temperature for Multicrystalline Solar Cell Application

  • Karunagaran, B.;Yoo, J.S.;Kim, D.Y.;Kim, Kyung-Hae;Dhungel, S.K.;Mangalaraj, D.;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.276-279
    • /
    • 2004
  • Plasma enhanced chemical vapor deposition (PECVD) of silicon nitride (SiN) is a proven technique for obtaining layers that meet the needs of surface passivation and anti-reflection coating. In addition, the deposition process appears to provoke bulk passivation as well due to diffusion of atomic hydrogen. This bulk passivation is an important advantage of PECVD deposition when compared to the conventional CVD techniques. A further advantage of PECVD is that the process takes place at a relatively low temperature of 300t, keeping the total thermal budget of the cell processing to a minimum. In this work SiN deposition was performed using a horizontal PECVD reactor system consisting of a long horizontal quartz tube that was radiantly heated. Special and long rectangular graphite plates served as both the electrodes to establish the plasma and holders of the wafers. The electrode configuration was designed to provide a uniform plasma environment for each wafer and to ensure the film uniformity. These horizontally oriented graphite electrodes were stacked parallel to one another, side by side, with alternating plates serving as power and ground electrodes for the RF power supply. The plasma was formed in the space between each pair of plates. Also this paper deals with the fabrication of multicrystalline silicon solar cells with PECVD SiN layers combined with high-throughput screen printing and RTP firing. Using this sequence we were able to obtain solar cells with an efficiency of 14% for polished multi crystalline Si wafers of size 125 m square.

  • PDF

Step-Coverage Consideration of Inter Metal Dielectrics in DLM Processing : PECVD and $O_3$ ThCVD Oxides (이층 배선공정에서 층간 절연막의 층덮힘성 연구 : PECVD와 $O_3$ThCVD 산화막)

  • Park, Dae-Gyu;Kim, Chung-Tae;Go, Cheol-Gi
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.228-238
    • /
    • 1992
  • An investigation on the step-coverage of PECVD and $O_3$ ThCVD oxides was undertaken to implement into the void-free inter metal dielectric planarization using multi-chamber system for the submicron double level metallization. At various initial aspect ratios the instantaneous aspect ratios were measured through modelling and experiment by depositing the oxides up to $0.9{\mu}m$ in thickness in order to monitor the onset of void formation. The modelling was found to be in a good agreement with the observed instantaneous aspect ratio of TEOS-based PECVD oxide whose re-entrant angle was less than $5^{\circ}$. It is demonstrated that either keeping the instantaneous aspect ratio of PECVD oxide as a first layer less than a factor of 0.8 or employing Ar sputter etch to create sloped oxide edge ensures the void-free planarization after$O_3$ ThCVD oxide deposition whose step-coverage is superior to PECVD oxide. It has been observed that $O_3$ ThCVD oxide etchback scheme has shown higher yield of via contact chain than non etchback process, with resistance per via contact of $0.1~0.3{\Omega}/{\mu}m^2$.

  • PDF