• Title/Summary/Keyword: Multi-Objectives

Search Result 780, Processing Time 0.029 seconds

An Integrated Approach to the Analysis and Design of a Three-Axis Cross-Coupling Control System

  • Jee, Sung-Chul;Lee, Hak-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2007
  • We propose a controller design analysis for a cross-coupling control system, which is essential for achieving high contouring accuracy in multi-axis CNC systems. The proposed analysis combines three axial controllers for each individual feed drive system together with a cross-coupling controller at the beginning of the design stage in an integrated manner. These two types of controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme is based on a mathematical formulation of a three-dimensional contour error model and includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy at steady state. A computer simulation was used to demonstrate the validity of the proposed methodology. The performance variation was investigated under different operating conditions and controller gains, and a design range was elicited that met the given performance specifications. The results provide basic guidelines in systematic and comprehensive controller designs for multi-axis CNC systems. A cross-coupling control system was also implemented on a PC-based three-axis CNC testbed, and the experimental results confirmed the usefulness of the proposed control system in terms of contouring accuracy.

Delay-Constrained Energy-Efficient Cluster-based Multi-Hop Routing in Wireless Sensor Networks

  • Huynh, Trong-Thua;Dinh-Duc, Anh-Vu;Tran, Cong-Hung
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.580-588
    • /
    • 2016
  • Energy efficiency is the main objective in the design of a wireless sensor network (WSN). In many applications, sensing data must be transmitted from sources to a sink in a timely manner. This paper describes an investigation of the trade-off between two objectives in WSN design: minimizing energy consumption and minimizing end-to-end delay. We first propose a new distributed clustering approach to determining the best clusterhead for each cluster by considering both energy consumption and end-to-end delay requirements. Next, we propose a new energy-cost function and a new end-to-end delay function for use in an inter-cluster routing algorithm. We present a multi-hop routing algorithm for use in disseminating sensing data from clusterheads to a sink at the minimum energy cost subject to an end-to-end delay constraint. The results of a simulation are consistent with our theoretical analysis results and show that our proposed performs much better than similar protocols in terms of energy consumption and end-to-end delay.

Intelligent Coordination Method of Multiple Distributed Resources for Harmonic Current Compensation in a Microgrid

  • Kang, Hyun-Koo;Yoo, Choel-Hee;Chung, Il-Yop;Won, Dong-Jun;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.834-844
    • /
    • 2012
  • Nonlinear electronic loads draw harmonic currents from the power grids that can cause energy loss, miss-operation of power equipment, and other serious problems in the power grids. This paper proposes a harmonic compensation method using multiple distributed resources (DRs) such as small distributed generators (DGs) and battery energy storage systems (BESSs) that are integrated to the power grids through power inverters. For harmonic compensation, DRs should inject additional apparent power to the grids so that certain DRs, especially operated in proximity to their rated power, may possibly reach their maximum current limits. Therefore, intelligent coordination methods of multiple DRs are required for efficient harmonic current compensation considering the power margins of DRs, energy cost, and the battery state-of-charge. The proposed method is based on fuzzy multi-objective optimization so that DRs can cooperate with other DRs to eliminate harmonic currents with optimizing mutually conflicting multi-objectives.

Mean Field Game based Reinforcement Learning for Weapon-Target Assignment (평균 필드 게임 기반의 강화학습을 통한 무기-표적 할당)

  • Shin, Min Kyu;Park, Soon-Seo;Lee, Daniel;Choi, Han-Lim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.337-345
    • /
    • 2020
  • The Weapon-Target Assignment(WTA) problem can be formulated as an optimization problem that minimize the threat of targets. Existing methods consider the trade-off between optimality and execution time to meet the various mission objectives. We propose a multi-agent reinforcement learning algorithm for WTA based on mean field game to solve the problem in real-time with nearly optimal accuracy. Mean field game is a recent method introduced to relieve the curse of dimensionality in multi-agent learning algorithm. In addition, previous reinforcement learning models for WTA generally do not consider weapon interference, which may be critical in real world operations. Therefore, we modify the reward function to discourage the crossing of weapon trajectories. The feasibility of the proposed method was verified through simulation of a WTA problem with multiple targets in realtime and the proposed algorithm can assign the weapons to all targets without crossing trajectories of weapons.

Intraoperative discomfort associated with the use of a rotary or reciprocating system: a prospective randomized clinical trial

  • Gomes, Aline Cristine;Soares, Adriana Jesus;Souza, Erick M;Zaia, Alexandre Augusto;Silva, Emmanuel Joao Nogueira Leal
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.2
    • /
    • pp.140-145
    • /
    • 2017
  • Objectives: The aim of this randomized, controlled, prospective clinical study was to evaluate patients' intraoperative discomfort during root canal preparations in which either multi-file rotary (Mtwo) or single-file reciprocating (Reciproc) systems were used. Materials and Methods: Fifty-five adult patients, aged between 25 and 69 years old, with irreversible pulpitis or pulp necrosis participated in this study. Either the mesiobuccal or the distobuccal canals for maxillary molars and either the mesiobuccal or the mesiolingual canals for mandibular molars were randomly chosen to be instrumented with Mtwo multi-file rotary or Reciproc single-file reciprocating systems. Immediately after each canal instrumentation under anesthesia, patient discomfort was assessed using a 1 - 10 visual analog scale (VAS), ranging from 'least possible discomfort' (1) to 'greatest possible discomfort' (10). The Wilcoxon signed-rank test was used to determine significant differences at p < 0.05. Results: Little intraoperative discomfort was found in all cases. No statistically significant differences in intraoperative discomfort between the 2 systems were found (p = 0.660). Conclusions: Root canal preparation with multi-file rotary or single-file reciprocating systems had similar and minimal effects on patients' intraoperative discomfort.

An Efficient PSO Algorithm for Finding Pareto-Frontier in Multi-Objective Job Shop Scheduling Problems

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.151-160
    • /
    • 2013
  • In the past decades, several algorithms based on evolutionary approaches have been proposed for solving job shop scheduling problems (JSP), which is well-known as one of the most difficult combinatorial optimization problems. Most of them have concentrated on finding optimal solutions of a single objective, i.e., makespan, or total weighted tardiness. However, real-world scheduling problems generally involve multiple objectives which must be considered simultaneously. This paper proposes an efficient particle swarm optimization based approach to find a Pareto front for multi-objective JSP. The objective is to simultaneously minimize makespan and total tardiness of jobs. The proposed algorithm employs an Elite group to store the updated non-dominated solutions found by the whole swarm and utilizes those solutions as the guidance for particle movement. A single swarm with a mixture of four groups of particles with different movement strategies is adopted to search for Pareto solutions. The performance of the proposed method is evaluated on a set of benchmark problems and compared with the results from the existing algorithms. The experimental results demonstrate that the proposed algorithm is capable of providing a set of diverse and high-quality non-dominated solutions.

Mechanical Interface Design of Optical Pay loads in a GEO Multi-Functional Satellite (정지궤도 복합위성의 광학탑재체 기계접속설계)

  • Park, Jong-Seok;Kim, Chang-Ho;Jeon, Hyung-Yoll;Kim, Sung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • The COMS is a kind of geostationary multi-functional satellites with three different mission objectives. Two of them aim at earth observation and the COMS has two optical payloads according to those missions. The payloads are composed of a meteo imager and an ocean color imager, and their inherent characteristics require optimal interface design for their performance to be concurrently achieved. Therefore, various kinds of constraints are considered in their component accommodation on the COMS platform. This paper shows a general overview of the optical payload accommodation design and describes the design consideration to achieve the optimized performance from thermal and mechanical point of view.

  • PDF

Perception of Tamil Mono-Syllabic and Bi-Syllabic Words in Multi-Talker Speech Babble by Young Adults with Normal Hearing

  • Gnanasekar, Sasirekha;Vaidyanath, Ramya
    • Journal of Audiology & Otology
    • /
    • v.23 no.4
    • /
    • pp.181-186
    • /
    • 2019
  • Background and Objectives: This study compared the perception of mono-syllabic and bisyllabic words in Tamil by young normal hearing adults in the presence of multi-talker speech babble at two signal-to-noise ratios (SNRs). Further for this comparison, a speech perception in noise test was constructed using existing mono-syllabic and bi-syllabic word lists in Tamil. Subjects and Methods: A total of 30 participants with normal hearing in the age range of 18 to 25 years participated in the study. Speech-in-noise test in Tamil (SPIN-T) constructed using mono-syllabic and bi-syllabic words in Tamil was used as stimuli. The stimuli were presented in the background of multi-talker speech babble at two SNRs (0 dB and +10 dB SNR). Results: The effect of noise on SPIN-T varied with SNR. All the participants performed better at +10 dB SNR, the higher of the two SNRs considered. Additionally, at +10 dB SNR performance did not vary significantly for neither mono-syllabic or bi-syllabic words. However, a significant difference existed at 0 dB SNR. Conclusions: The current study indicated that higher SNR leads to better performance. In addition, bi-syllabic words were identified with minimal errors compared to mono-syllabic words. Spectral cues were the most affected in the presence of noise leading to more of place of articulation errors for both mono-syllabic and bi-syllabic words.

Perception of Tamil Mono-Syllabic and Bi-Syllabic Words in Multi-Talker Speech Babble by Young Adults with Normal Hearing

  • Gnanasekar, Sasirekha;Vaidyanath, Ramya
    • Korean Journal of Audiology
    • /
    • v.23 no.4
    • /
    • pp.181-186
    • /
    • 2019
  • Background and Objectives: This study compared the perception of mono-syllabic and bisyllabic words in Tamil by young normal hearing adults in the presence of multi-talker speech babble at two signal-to-noise ratios (SNRs). Further for this comparison, a speech perception in noise test was constructed using existing mono-syllabic and bi-syllabic word lists in Tamil. Subjects and Methods: A total of 30 participants with normal hearing in the age range of 18 to 25 years participated in the study. Speech-in-noise test in Tamil (SPIN-T) constructed using mono-syllabic and bi-syllabic words in Tamil was used as stimuli. The stimuli were presented in the background of multi-talker speech babble at two SNRs (0 dB and +10 dB SNR). Results: The effect of noise on SPIN-T varied with SNR. All the participants performed better at +10 dB SNR, the higher of the two SNRs considered. Additionally, at +10 dB SNR performance did not vary significantly for neither mono-syllabic or bi-syllabic words. However, a significant difference existed at 0 dB SNR. Conclusions: The current study indicated that higher SNR leads to better performance. In addition, bi-syllabic words were identified with minimal errors compared to mono-syllabic words. Spectral cues were the most affected in the presence of noise leading to more of place of articulation errors for both mono-syllabic and bi-syllabic words.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.