• Title/Summary/Keyword: Multi-Model Training

Search Result 352, Processing Time 0.035 seconds

Real-Time Estimation of Multi TCSC Reference Quantity for Improvement of Transient Stability Energy Margin (과도안정도 에너지 마진 향상을 위한 다기의 TCSC 적정량 실시간 산정)

  • Kim, Su-Nam;Yu, Seok-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.454-463
    • /
    • 2001
  • This paper presents a method for real-time estimation of TCSC reference quantity in order to enhance the power system transient stability energy margin using artificial neural network in multi-machine system. This paper has the three parts, the first part is to determine the lines to be installed by TCSC. The seconds is to estimate the energy margin using by ANN. To get the critical energy for training, we use the potential energy boundary surface(PEBS) method which is one of the transient energy function(TEF) method. And the last is to determine the TCSC reference quantity. In order to make training data for ANN in this step, we use genetic algorithm(GA). The proposed method is applied to 39-bus, 46-line. 10-machine model system to show its effectiveness.

  • PDF

Multi-]factor Analysis of Firm-Level Performance Through Feed-Forward, Feed-Back Relationships (다중요소 상호간의 연관성과 연속적 시뮬레이션 기법을 이용한 생산성 측정방법에 관한 연구)

  • 박영홍
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.1
    • /
    • pp.59-70
    • /
    • 2002
  • This article presents the results of research to develop a descriptive model of firm-level productivity that will allow a myriad of factor interactions to be directly accounted for. The model is a linked set of equations that attempt to capture how changes in one-factor influences the level of another factor. and ultimately bottom-line performance. The model is coded in SIMAN. It is used to determine the best use of an infusion of funds should they go for additional automation, or training etc. An application of the model to U.S. industry is presented based on parameter values obtained through a national survey.

  • PDF

Evaluation of Multi-classification Model Performance for Algal Bloom Prediction Using CatBoost (머신러닝 CatBoost 다중 분류 알고리즘을 이용한 조류 발생 예측 모형 성능 평가 연구)

  • Juneoh Kim;Jungsu Park
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Monitoring and prediction of water quality are essential for effective river pollution prevention and water quality management. In this study, a multi-classification model was developed to predict chlorophyll-a (Chl-a) level in rivers. A model was developed using CatBoost, a novel ensemble machine learning algorithm. The model was developed using hourly field monitoring data collected from January 1 to December 31, 2015. For model development, chl-a was classified into class 1 (Chl-a≤10 ㎍/L), class 2 (10<Chl-a≤50 ㎍/L), and class 3 (Chl-a>50 ㎍/L), where the number of data used for the model training were 27,192, 11,031, and 511, respectively. The macro averages of precision, recall, and F1-score for the three classes were 0.58, 0.58, and 0.58, respectively, while the weighted averages were 0.89, 0.90, and 0.89, for precision, recall, and F1-score, respectively. The model showed relatively poor performance for class 3 where the number of observations was much smaller compared to the other two classes. The imbalance of data distribution among the three classes was resolved by using the synthetic minority over-sampling technique (SMOTE) algorithm, where the number of data used for model training was evenly distributed as 26,868 for each class. The model performance was improved with the macro averages of precision, rcall, and F1-score of the three classes as 0.58, 0.70, and 0.59, respectively, while the weighted averages were 0.88, 0.84, and 0.86 after SMOTE application.

Multi-parametric MRIs based assessment of Hepatocellular Carcinoma Differentiation with Multi-scale ResNet

  • Jia, Xibin;Xiao, Yujie;Yang, Dawei;Yang, Zhenghan;Lu, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5179-5196
    • /
    • 2019
  • To explore an effective non-invasion medical imaging diagnostics approach for hepatocellular carcinoma (HCC), we propose a method based on adopting the multiple technologies with the multi-parametric data fusion, transfer learning, and multi-scale deep feature extraction. Firstly, to make full use of complementary and enhancing the contribution of different modalities viz. multi-parametric MRI images in the lesion diagnosis, we propose a data-level fusion strategy. Secondly, based on the fusion data as the input, the multi-scale residual neural network with SPP (Spatial Pyramid Pooling) is utilized for the discriminative feature representation learning. Thirdly, to mitigate the impact of the lack of training samples, we do the pre-training of the proposed multi-scale residual neural network model on the natural image dataset and the fine-tuning with the chosen multi-parametric MRI images as complementary data. The comparative experiment results on the dataset from the clinical cases show that our proposed approach by employing the multiple strategies achieves the highest accuracy of 0.847±0.023 in the classification problem on the HCC differentiation. In the problem of discriminating the HCC lesion from the non-tumor area, we achieve a good performance with accuracy, sensitivity, specificity and AUC (area under the ROC curve) being 0.981±0.002, 0.981±0.002, 0.991±0.007 and 0.999±0.0008, respectively.

A Study on the Design of Multi-FNN Using HCM Method (HCM 방법을 이용한 다중 FNN 설계에 관한 연구)

  • Park, Ho-Sung;Yoon, Ki-Chan;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.797-799
    • /
    • 1999
  • In this paper, we design the Multi-FNN(Fuzzy-Neural Networks) using HCM Method. The proposed Multi-FNN uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. Also, We use HCM(Hard C-Means) method of clustering technique for improvement of output performance from pre-processing of input data. The parameters such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. We use the training and testing data set to obtain a balance between the approximation and the generalization of our model. Several numerical examples are used to evaluate the performance of the our model. From the results, we can obtain higher accuracy and feasibility than any other works presented previously.

  • PDF

Aircraft Recognition from Remote Sensing Images Based on Machine Vision

  • Chen, Lu;Zhou, Liming;Liu, Jinming
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.795-808
    • /
    • 2020
  • Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.

A Study on Auction-Inspired Multi-GAN Training (경매 메커니즘을 이용한 다중 적대적 생성 신경망 학습에 관한 연구)

  • Joo Yong Shim;Jean Seong Bjorn Choe;Jong-Kook Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.527-529
    • /
    • 2023
  • Generative Adversarial Networks (GANs) models have developed rapidly due to the emergence of various variation models and their wide applications. Despite many recent developments in GANs, mode collapse, and instability are still unresolved issues. To address these problems, we focused on the fact that a single GANs model itself cannot realize local failure during the training phase without external standards. This paper introduces a novel training process involving multiple GANs, inspired by auction mechanisms. During the training, auxiliary performance metrics for each GANs are determined by the others through the process of various auction methods.

Multi-classification Sensitive Image Detection Method Based on Lightweight Convolutional Neural Network

  • Yueheng Mao;Bin Song;Zhiyong Zhang;Wenhou Yang;Yu Lan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1433-1449
    • /
    • 2023
  • In recent years, the rapid development of social networks has led to a rapid increase in the amount of information available on the Internet, which contains a large amount of sensitive information related to pornography, politics, and terrorism. In the aspect of sensitive image detection, the existing machine learning algorithms are confronted with problems such as large model size, long training time, and slow detection speed when auditing and supervising. In order to detect sensitive images more accurately and quickly, this paper proposes a multiclassification sensitive image detection method based on lightweight Convolutional Neural Network. On the basis of the EfficientNet model, this method combines the Ghost Module idea of the GhostNet model and adds the SE channel attention mechanism in the Ghost Module for feature extraction training. The experimental results on the sensitive image data set constructed in this paper show that the accuracy of the proposed method in sensitive information detection is 94.46% higher than that of the similar methods. Then, the model is pruned through an ablation experiment, and the activation function is replaced by Hard-Swish, which reduces the parameters of the original model by 54.67%. Under the condition of ensuring accuracy, the detection time of a single image is reduced from 8.88ms to 6.37ms. The results of the experiment demonstrate that the method put forward has successfully enhanced the precision of identifying multi-class sensitive images, significantly decreased the number of parameters in the model, and achieved higher accuracy than comparable algorithms while using a more lightweight model design.

MLP Based Real-Time Gravity Disturbance Compensation in INS Embedded Computer (다층 레이어 퍼셉트론 기반 INS 내장형 컴퓨터에서의 실시간 중력교란 보상)

  • Hyun-seok Kim;Hyung-soo Kim;Yun-hyuk Choi;Yun-chul Cho;Chan-sik Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.674-684
    • /
    • 2023
  • In this paper, a real-time prediction technique for gravity disturbances is proposed using a multi-layer perceptron (MLP) model. To select a suitable MLP model, 4 models with different network sizes were designed to compare the training accuracy and execution time. The MLP models were trained using the data of vehicle moving along the surface of the sea or land, including their positions and gravity disturbance. The gravity disturbances were calculated using the 2160th degree and order EGM2008 with SHM. Among the models, MLP4 demonstrated the highest training accuracy. After training, the weights and biases of the 4 models were stored in the embedded computer of the INS to implement the MLP network. MLP4 was found to have the shortest execution time among the 4 models. These research results are expected to contribute to improving the navigation accuracy of INS through gravity disturbance compensation in the future.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.