KSII Transactions on Internet and Information Systems (TIIS)
/
v.4
no.5
/
pp.859-876
/
2010
In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.
DO, Anh Duc;PHAM, Ngoc Thach;BUI, Hong Phuong;VU, Duc Thanh;NGUYEN, The Kien;NGUYEN, Thi Huyen
The Journal of Asian Finance, Economics and Business
/
v.7
no.8
/
pp.425-433
/
2020
This paper aims to develop a conceptual framework for evaluating the impact of motivational factors on the work results of lecturers at Vietnam National University, Hanoi (VNU), one of two leading multidisciplinary and multi-sectoral national universities in Vietnam. This study has considered wages and other benefits (WB), training and development (TD), working environment (WE) and working motivation (WM) as motivational factors, and proposed a structural model of the impact of motivational factors on the work results of lecturers at VNU. The empirical analysis used data from the survey data of 321 university lecturers. Comprehensive, valid, and reliable tools (SPSS 26 and SmartPLS 3.0 software) are used to evaluate rigorous statistical tests including convergence validity, discriminatory validity, reliability, and average variance extracted to analyze and verify the gathered data, and the hypotheses developed. The result of path analysis shows that four motivational factors constitute a structured system with different degrees of influence on the work results of lecturers. There is also a positive relationship between the motivational factors and the work results of lecturers. As a result, it can be concluded that all hypotheses developed are supported. Several recommendations are further suggested to improve the performance of lecturers at VNU.
The Q-learning algorithm based on reinforcement learning is useful for learning the goal for one behavior at a time, using a combination of discrete states and actions. In order to learn multiple actions, applying a behavior-based architecture and using an appropriate behavior adjustment method can make a robot perform fast and reliable actions. Q-learning is a popular reinforcement learning method, and is used much for robot learning for its characteristics which are simple, convergent and little affected by the training environment (off-policy). In this paper, Q-learning algorithm is applied to a lamp robot to learn multiple behaviors (human recognition, desk object recognition). As the learning rate of Q-learning may affect the performance of the robot at the learning stage of multiple behaviors, we present the optimal multiple behaviors learning model by changing learning rate.
Purpose - According to the applied studies knowledge, management implementation can improve organizational performance. The main objective of this study is to develop an understanding of critical success factors that enhance the successful implementation of knowledge management. Research design, data, and methodology - This study used Analytical Hierarchy Procedure (AHP), which is a multi-criteria decision making model that works on fuzzy logic. Using this method, researchers can find the proportion of success due to the contribution of the critical success factors (CSFs). Results - The results show that more than 70% of respondents indicate the possibility of success in knowledge management implementation. Further, the results show that top management support has the greatest relationship with the success of knowledge management implementation. This was followed by information technology, performance measurement, and culture, which had a high relation with knowledge management success. Process and activities have a moderate positive relation, while education and training has a low relation with success. Because of an inappropriate p-value, knowledge management strategies show no relation to the success of knowledge management in the Iranian health Industry. Conclusions - This study was conducted because of a critical issue in the Iranian health industry that indicated that a significant portion of the workforce would retire in 5 to 10 years. Most highly experienced and knowledge oriented employees would become eligible for retirement. Therefore, knowledge management is presented as a complete solution in the Iranian health sector.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.3
/
pp.333-340
/
2022
The COVID-19 has made everyone anxious and people need to keep their distance. It is necessary to conduct collective assessment and screening of college students' mental health in the opening season of every year. This study uses and trains a multi-layer perceptron neural network model for deep learning to identify facial emotions. After the training, real pictures and videos were input for face detection. After detecting the positions of faces in the samples, emotions were classified, and the predicted emotional results of the samples were sent back and displayed on the pictures. The results show that the accuracy is 93.2% in the test set and 95.57% in practice. The recognition rate of Anger is 95%, Disgust is 97%, Happiness is 96%, Fear is 96%, Sadness is 97%, Surprise is 95%, Neutral is 93%, such efficient emotion recognition can provide objective data support for capturing negative. Deep learning emotion recognition system can cooperate with traditional psychological activities to provide more dimensions of psychological indicators for health.
The Korea Customs Service is efficiently handling business with an electronic customs system that can effectively handle one-stop business. This is the case and a more effective method is needed. Import and export require HS Code (Harmonized System Code) for classification and tax rate application for all goods, and item classification that classifies the HS Code is a highly difficult task that requires specialized knowledge and experience and is an important part of customs clearance procedures. Therefore, this study uses various types of data information such as product name, product description, and product image in the item classification request form to learn and develop a deep learning model to reflect information well based on Multimodal representation learning. It is expected to reduce the burden of customs duties by classifying and recommending HS Codes and help with customs procedures by promptly classifying items.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.2
/
pp.389-396
/
2024
Generative AI has recently been utilized across all fields, achieving expert-level advancements in deep data analysis. However, identifying regional names in scientific literature remains a challenge due to insufficient training data and limited AI application. This study developed a standardized dataset for effectively classifying regional names using address data from Korean institution-affiliated authors listed in the Web of Science. It tested and evaluated the applicability of machine learning and deep learning models in real-world problems. The BERT model showed superior performance, with a precision of 98.41%, recall of 98.2%, and F1 score of 98.31% for metropolitan areas, and a precision of 91.79%, recall of 88.32%, and F1 score of 89.54% for city classifications. These findings offer a valuable data foundation for future research on regional R&D status, researcher mobility, collaboration status, and so on.
Kim, Eden;Jang, Hyemin;Shin, Sungho;Jeong, Sungho;Hwang, Euiseok
Resources Recycling
/
v.27
no.1
/
pp.84-91
/
2018
In this study, a novel soft information based most probable classification scheme is proposed for sorting recyclable metal alloys with laser induced breakdown spectroscopy (LIBS). Regression analysis with LIBS captured spectrums for estimating concentrations of common elements can be efficient for classifying unknown arbitrary metal alloys, even when that particular alloy is not included for training. Therefore, partial least square regression (PLSR) is employed in the proposed scheme, where spectrums of the certified reference materials (CRMs) are used for training. With the PLSR model, the concentrations of the test spectrum are estimated independently and are compared to those of CRMs for finding out the most probable class. Then, joint soft information can be obtained by assuming multi-variate normal (MVN) distribution, which enables to account the probability measure or a prior information and improves classification performance. For evaluating the proposed schemes, MVN soft information is evaluated based on PLSR of LIBS captured spectrums of 9 metal CRMs, and tested for classifying unknown metal alloys. Furthermore, the likelihood is evaluated with the radar chart to effectively visualize and search the most probable class among the candidates. By the leave-one-out cross validation tests, the proposed scheme is not only showing improved classification accuracies but also helpful for adaptive post-processing to correct the mis-classifications.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.9
/
pp.387-396
/
2020
The purpose of this study is to identify the variables of metropolitan and provincial offices of education that affect the academic achievement of unit schools, and to predict how academic achievements dynamically change with the support of offices of education. The results of academic achievement of 606 general high schools in 16 metropolitan and provincial offices of education(rates of attaining more than normal education in Korean, English, and mathematics subjects) were analyzed using a multi-level model and system dynamics. As a result of the analysis, it was confirmed that the provincial and provincial offices of education's efforts to increase the efficiency of local education finance, the efforts to reduce teacher administration, and the facilitation of faculty training were the variables of the provincial and provincial offices of education. In addition, through policy experiments, efforts to revitalize teacher training were the most influential factors in academic achievement of unit schools, followed by efforts to streamline local education finances and to reduce the administrative work of teachers. In order to improve the academic achievement of unit schools, the functions of the metropolitan and provincial offices of education should be strengthened based on the education accountability, and policies need to be established in the mid- to long-term perspective.
Dose calculations which are a crucial requirement for radiotherapy treatment planning systems require accuracy and rapid calculations. The conventional radiotherapy treatment planning dose algorithms are rapid but lack precision. Monte Carlo methods are time consuming but the most accurate. The new combined system that Monte Carlo methods calculate part of interesting domain and the rest is calculated by neural can calculate the dose distribution rapidly and accurately. The preliminary study showed that neural networks can map functions which contain discontinuous points and inflection points which the dose distributions in inhomogeneous media also have. Performance results between scaled conjugated gradient algorithm and Levenberg-Marquardt algorithm which are used for training the neural network with a different number of neurons were compared. Finally, the dose distributions of homogeneous phantom calculated by a commercialized treatment planning system were used as training data of the neural network. In the case of homogeneous phantom;the mean squared error of percent depth dose was 0.00214. Further works are programmed to develop the neural network model for 3-dimensinal dose calculations in homogeneous phantoms and inhomogeneous phantoms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.