• 제목/요약/키워드: Multi-Model Training

Search Result 352, Processing Time 0.027 seconds

Damage Detection of Bridge Structures Considering Uncertainty in Analysis Model (해석모델의 불확실성을 고려한 교량의 손상추정기법)

  • Lee Jong-Jae;Yun Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.125-138
    • /
    • 2006
  • The use of system identification approaches for damage detection has been expanded in recent years owing to the advancements in data acquisition system andinformation processing techniques. Soft computing techniques such as neural networks and genetic algorithm have been utilized increasingly for this end due to their excellent pattern recognition capability. In this study, damage detection of bridge structures using neural networks technique based on the modal properties is presented, which can effectively consider the modeling uncertainty in the analysis model from which the training patterns are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness and applicability of the proposed method.

Inter-comparison of Prediction Skills of Multiple Linear Regression Methods Using Monthly Temperature Simulated by Multi-Regional Climate Models (다중 지역기후모델로부터 모의된 월 기온자료를 이용한 다중선형회귀모형들의 예측성능 비교)

  • Seong, Min-Gyu;Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.669-683
    • /
    • 2015
  • In this study, we investigated the prediction skills of four multiple linear regression methods for monthly air temperature over South Korea. We used simulation results from four regional climate models (RegCM4, SNURCM, WRF, and YSURSM) driven by two boundary conditions (NCEP/DOE Reanalysis 2 and ERA-Interim). We selected 15 years (1989~2003) as the training period and the last 5 years (2004~2008) as validation period. The four regression methods used in this study are as follows: 1) Homogeneous Multiple linear Regression (HMR), 2) Homogeneous Multiple linear Regression constraining the regression coefficients to be nonnegative (HMR+), 3) non-homogeneous multiple linear regression (EMOS; Ensemble Model Output Statistics), 4) EMOS with positive coefficients (EMOS+). It is same method as the third method except for constraining the coefficients to be nonnegative. The four regression methods showed similar prediction skills for the monthly air temperature over South Korea. However, the prediction skills of regression methods which don't constrain regression coefficients to be nonnegative are clearly impacted by the existence of outliers. Among the four multiple linear regression methods, HMR+ and EMOS+ methods showed the best skill during the validation period. HMR+ and EMOS+ methods showed a very similar performance in terms of the MAE and RMSE. Therefore, we recommend the HMR+ as the best method because of ease of development and applications.

Occupational Health Care Management Model in Small Scale Enterprises (소규모 사업장 보건관리 모델개발에 관한 연구)

  • Yun, Soon-Nyung;Jung, Hye-Sun
    • Research in Community and Public Health Nursing
    • /
    • v.12 no.3
    • /
    • pp.647-660
    • /
    • 2001
  • Forming health care management model in small-scale enterprises was the purpose of this study. For the purpose, we tried to investigate the characteristics of small-scale enterprises and analyzed the pattern of their health care management. The results are as follow: 1. The strength of health managing agency and technical supporting program lies in team approach by specialized manpower. However, if the liaison between each part of the organization is not smooth, the overall management will be very difficult. 2. Small scale enterprises are characterized by their short life after the establishment, use of rental building, lack of welfare facilities, weakness in sanitary management and aggregation of factories of similar type of industry. Because of these characteristics, it is very difficult to solve problem basically, such as improvement of working environment. Therefore, it is important to focus on health education and community based approach. 3. Many workers in small-scale factories are in middle and old age. They have health problems mainly related to personal habits. Implementation of an appropriate health promotion program is needed. 4. The number of workplaces, which should be managed by health managing agent. is increasing rapidly. But the number of health managing agent is limited. In the aspect of the requirement of manpower and equipment, training personal agent is more urgent than founding institutional agent. 5. The uniform method of health management hampers the choice of employer and workers. The types of provision of health management should be diversified. 6. For an efficient management, a frequent visit of personal agent and the following referral to a specialist should be done. The specialists in charge of secondary management are from the field of occupational medicine, occupational hygiene, ergonomics, etc. 7. The health management of small-scale facilities should have six components. They are community-based approach, multi-disciplinary cooperative system, program based on the need of recipient, forming partnership of employer and worker, change of lifestyle, and evidence-based program.

  • PDF

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

  • Wang, Jianguo Jack;Wang, Jinling;Sinclair, David;Watts, Leo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.277-282
    • /
    • 2006
  • It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally only when its dynamic model is correctly defined and the noise statistics for the measurement and process are completely known. It is found that estimated Kalman filter states could be influenced by several factors, including vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural network is capable of learning and extracting these complex relationships with enough training. This paper presents a GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network design are presented. Field test data are processed to evaluate the performance of the proposed method.

  • PDF

Multiaspect-based Active Sonar Target Classification Using Deep Belief Network (DBN을 이용한 다중 방위 데이터 기반 능동소나 표적 식별)

  • Kim, Dong-wook;Bae, Keun-sung;Seok, Jong-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.418-424
    • /
    • 2018
  • Detection and classification of underwater targets is an important issue for both military and non-military purposes. Recently, many performance improvements are being reported in the field of pattern recognition with the development of deep learning technology. Among the results, DBN showed good performance when used for pre-training of DNN. In this paper, DBN was used for the classification of underwater targets using active sonar, and the results are compared with that of the conventional BPNN. We synthesized active sonar target signals using 3-dimensional highlight model. Then, features were extracted based on FrFT. In the single aspect based experiment, the classification result using DBN was improved about 3.83% compared with the BPNN. In the case of multi-aspect based experiment, a performance of 95% or more is obtained when the number of observation sequence exceeds three.

Factors Affecting Logistics Capabilities for Logistics Service Providers: A Case Study in Vietnam

  • DANG, Dinh Dao;HA, Dieu Linh;TRAN, Van Bao;NGUYEN, Van Tuan;NGUYEN, Thi Lien Huong;DANG, Thuy Hong;LE, Thi Thai Ha
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.81-89
    • /
    • 2021
  • This study aimed to investigate the factors affecting Logistics capabilities for Logistics Service Providers in Vietnam. Researchers inherited and developed based on previous research to focus on analyzing and evaluating dynamics, measuring Logistics capabilities, and the factors affecting Logistics capabilities for Logistics Service Providers. The logistics capabilities Model is used based on three factors: customer demand management capability, innovation capability, and information management capability. The empirical analysis used data from the survey data of l90 managers of Logistics Service Providers in Hai Phong, Ho Chi Minh City, Da Nang, Hue, Hanoi with reliable tools (SPSS 26.0 software). The data were analyzed by frequencies, percentages, means, Pearson's Linear Correlation Coefficient, exploratory factor analysis, and multi-linear regression model based on the survey data. The research results identified the following factors affecting Logistics capabilities for Logistics Service Providers: innovation capability has the strongest impact on Logistics capabilities; customer demand management capability has the following strong effects on Logistics capabilities; and finally, information management capability that affects Logistics capabilities. There is also a positive relationship between all factors and Logistics capabilities. Several recommendations are further suggested to enhance to improve Logistics capabilities for Logistics Service Providers in Vietnam.

Single Low-Light Ghost-Free Image Enhancement via Deep Retinex Model

  • Liu, Yan;Lv, Bingxue;Wang, Jingwen;Huang, Wei;Qiu, Tiantian;Chen, Yunzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1814-1828
    • /
    • 2021
  • Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under scotopic vision illumination conditions. The degradation includes low brightness, low contrast, and outstanding noise, which would seriously affect the vision of the human eye recognition ability and subsequent image processing. In this paper, we propose an approach based on deep learning and Retinex theory to enhance the low-light image, which includes image decomposition, illumination prediction, image reconstruction, and image optimization. The first three parts can reconstruct the enhanced image that suffers from low-resolution. To reduce the noise of the enhanced image and improve the image quality, a super-resolution algorithm based on the Laplacian pyramid network is introduced to optimize the image. The Laplacian pyramid network can improve the resolution of the enhanced image through multiple feature extraction and deconvolution operations. Furthermore, a combination loss function is explored in the network training stage to improve the efficiency of the algorithm. Extensive experiments and comprehensive evaluations demonstrate the strength of the proposed method, the result is closer to the real-world scene in lightness, color, and details. Besides, experiments also demonstrate that the proposed method with the single low-light image can achieve the same effect as multi-exposure image fusion algorithm and no ghost is introduced.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

A Study on the Evaluation of LLM's Gameplay Capabilities in Interactive Text-Based Games (대화형 텍스트 기반 게임에서 LLM의 게임플레이 기능 평가에 관한 연구)

  • Dongcheul Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.87-94
    • /
    • 2024
  • We investigated the feasibility of utilizing Large Language Models (LLMs) to perform text-based games without training on game data in advance. We adopted ChatGPT-3.5 and its state-of-the-art, ChatGPT-4, as the systems that implemented LLM. In addition, we added the persistent memory feature proposed in this paper to ChatGPT-4 to create three game player agents. We used Zork, one of the most famous text-based games, to see if the agents could navigate through complex locations, gather information, and solve puzzles. The results showed that the agent with persistent memory had the widest range of exploration and the best score among the three agents. However, all three agents were limited in solving puzzles, indicating that LLM is vulnerable to problems that require multi-level reasoning. Nevertheless, the proposed agent was still able to visit 37.3% of the total locations and collect all the items in the locations it visited, demonstrating the potential of LLM.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.