• Title/Summary/Keyword: Multi-Model Training

Search Result 352, Processing Time 0.028 seconds

Development of Artificial Intelligence Constitutive Equation Model Using Deep Learning (딥 러닝을 이용한 인공지능 구성방정식 모델의 개발)

  • Moon, H.B.;Kang, G.P.;Lee, K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2021
  • Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.

DRM-FL: A Decentralized and Randomized Mechanism for Privacy Protection in Cross-Silo Federated Learning Approach (DRM-FL: Cross-Silo Federated Learning 접근법의 프라이버시 보호를 위한 분산형 랜덤화 메커니즘)

  • Firdaus, Muhammad;Latt, Cho Nwe Zin;Aguilar, Mariz;Rhee, Kyung-Hyune
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.264-267
    • /
    • 2022
  • Recently, federated learning (FL) has increased prominence as a viable approach for enhancing user privacy and data security by allowing collaborative multi-party model learning without exchanging sensitive data. Despite this, most present FL systems still depend on a centralized aggregator to generate a global model by gathering all submitted models from users, which could expose user privacy and the risk of various threats from malicious users. To solve these issues, we suggested a safe FL framework that employs differential privacy to counter membership inference attacks during the collaborative FL model training process and empowers blockchain to replace the centralized aggregator server.

An Analytical Study on Performance Factors of Automatic Classification based on Machine Learning (기계학습에 기초한 자동분류의 성능 요소에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.2
    • /
    • pp.33-59
    • /
    • 2016
  • This study examined the factors affecting the performance of automatic classification for the domestic conference papers based on machine learning techniques. In particular, In view of the classification performance that assigning automatically the class labels to the papers in Proceedings of the Conference of Korean Society for Information Management using Rocchio algorithm, I investigated the characteristics of the key factors (classifier formation methods, training set size, weighting schemes, label assigning methods) through the diversified experiments. Consequently, It is more effective that apply proper parameters (${\beta}$, ${\lambda}$) and training set size (more than 5 years) according to the classification environments and properties of the document set. and If the performance is equivalent, I discovered that the use of the more simple methods (single weighting schemes) is very efficient. Also, because the classification of domestic papers is corresponding with multi-label classification which assigning more than one label to an article, it is necessary to develop the optimum classification model based on the characteristics of the key factors in consideration of this environment.

Privacy Preserving Techniques for Deep Learning in Multi-Party System (멀티 파티 시스템에서 딥러닝을 위한 프라이버시 보존 기술)

  • Hye-Kyeong Ko
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.647-654
    • /
    • 2023
  • Deep Learning is a useful method for classifying and recognizing complex data such as images and text, and the accuracy of the deep learning method is the basis for making artificial intelligence-based services on the Internet useful. However, the vast amount of user da vita used for training in deep learning has led to privacy violation problems, and it is worried that companies that have collected personal and sensitive data of users, such as photographs and voices, own the data indefinitely. Users cannot delete their data and cannot limit the purpose of use. For example, data owners such as medical institutions that want to apply deep learning technology to patients' medical records cannot share patient data because of privacy and confidentiality issues, making it difficult to benefit from deep learning technology. In this paper, we have designed a privacy preservation technique-applied deep learning technique that allows multiple workers to use a neural network model jointly, without sharing input datasets, in multi-party system. We proposed a method that can selectively share small subsets using an optimization algorithm based on modified stochastic gradient descent, confirming that it could facilitate training with increased learning accuracy while protecting private information.

Deep Learning-based Product Recommendation Model for Influencer Marketing (인플루언서를 위한 딥러닝 기반의 제품 추천모델 개발)

  • Song, Hee Seok;Kim, Jae Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.3
    • /
    • pp.43-55
    • /
    • 2022
  • In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

Essential technical and intellectual abilities for autonomous mobile service medical robots

  • Rogatkin, Dmitry A.;Velikanov, Evgeniy V.
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.59-68
    • /
    • 2018
  • Autonomous mobile service medical robots (AMSMRs) are one of the promising developments in contemporary medical robotics. In this study, we consider the essential technical and intellectual abilities needed by AMSMRs. Based on expert analysis of the behavior exhibited by AMSMRs in clinics under basic scenarios, these robots can be classified as intellectual dynamic systems acting according to a situation in a multi-object and multi-agent environment. An AMSMR should identify different objects that define the presented territory (rooms and paths), different objects between and inside rooms (doors, tables, and beds, among others), and other robots. They should also identify the means for interacting with these objects, people and their speech, different information for communication, and small objects for transportation. These are included in the minimum set required to form the internal world model in an AMSMR. Recognizing door handles and opening doors are some of the most difficult problems for contemporary AMSMRs. The ability to recognize the meaning of human speech and actions and to assist them effectively are other problems that need solutions. These unresolved issues indicate that AMSMRs will need to pass through some learning and training programs before starting real work in hospitals.

Development of the Expert Seasonal Prediction System: an Application for the Seasonal Outlook in Korea

  • Kim, WonMoo;Yeo, Sae-Rim;Kim, Yoojin
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.563-573
    • /
    • 2018
  • An Expert Seasonal Prediction System for operational Seasonal Outlook (ESPreSSO) is developed based on the APEC Climate Center (APCC) Multi-Model Ensemble (MME) dynamical prediction and expert-guided statistical downscaling techniques. Dynamical models have improved to provide meaningful seasonal prediction, and their prediction skills are further improved by various ensemble and downscaling techniques. However, experienced scientists and forecasters make subjective correction for the operational seasonal outlook due to limited prediction skills and biases of dynamical models. Here, a hybrid seasonal prediction system that grafts experts' knowledge and understanding onto dynamical MME prediction is developed to guide operational seasonal outlook in Korea. The basis dynamical prediction is based on the APCC MME, which are statistically mapped onto the station-based observations by experienced experts. Their subjective selection undergoes objective screening and quality control to generate final seasonal outlook products after physical ensemble averaging. The prediction system is constructed based on 23-year training period of 1983-2005, and its performance and stability are assessed for the independent 11-year prediction period of 2006-2016. The results show that the ESPreSSO has reliable and stable prediction skill suitable for operational use.

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

A Study on the Revision of Domestic Pilot Jet Type Rating (국내 조종사 제트 형식한정 개정에 관한 연구)

  • Sung-yeob Kim;Jihun Choi;Myeong-sik, Lee;Hyeon-deok, Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.534-539
    • /
    • 2023
  • Currently, in Korea, to obtain a jet type rating, you must receive training on a small business jet model. The reason is because of the law in the Aviation Safety Act Enforcement Rules 『Appendix 4』 that states, "You must receive at least 2 hours of flight training." In the end, it is acquiring type rating as a small business jet aircraft with relatively low operating costs. The qualifications acquired in this way are different from those for aircraft operated by airlines. However, if you have an initial jet type rating, you can acquire an airline aircraft qualification just by training on a simulator, so airlines want you to have at least a small-jet type rating. However, in the United States and Australia, there is a system in place to acquire initial jet type rating through simulator training without actual flight training.